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ABSTRACT 

L. Bonjorne de Almeida. Drivers of Mammalian Communities in Remnant Forests: A Case Study in the 
Atlantic Forest, Southeastern Brazil. 248 pages, 9 tables, 18 figures, 2021.  

 

Humans have modified more than 75% of the Earth’s surface, with some regions undergoing more 
severe modification such as the Atlantic Forest in Brazil which today has only ~12% of its original 
forest cover remaining. This dissertation investigated how forest amount, landscape context, and 
anthropogenic factors across the human-dominated Atlantic Forest region of Southeastern Brazil 
influenced the activity and space use of medium- to large-bodied terrestrial mammals, and by 
extension the composition and connectivity of mammalian communities. Although species 
responded differently to landscape and anthropogenic factors, generally 2x2 km landscape units 
that were <78% forested were less likely to be occupied by forest-dependent frugivores and 
carnivores than more generalist herbivorous, omnivorous, and insectivorous species. Free-ranging 
dogs were detected largely independently of people, with both humans and dogs predicted to have 
a high probability of occurrence across the majority of forest remnants. Although some mammals, 
such as Cuniculus paca and Dasypus spp., temporally avoided humans and dogs, other species, such 
as ocelot and oncilla, shifted their geographic space use to avoid these agents of disturbance. With 
respect to maintaining community connectivity, only 32% of the key habitats (nodes) in the study 
region were afforded strict protection from habitat conversion, with nearly one third of the habitat 
crucial for connectivity remaining at risk of loss to forest conversion. This study indicates that 
retaining the full complement of medium- to large-mammals in the region likely depends upon 
retaining and increasing forest amount, connectivity and levels of protection across. A major finding 
of this study is that a much higher proportion of forest amount (>78%) is needed to ensure 
persistence of many forest-dependent species, emphasizing the need for reforestation across the 
highly fragmented Atlantic Forest biome. This has implications for landscape planning should 
conservation of medium and large-sized mammals be a priority in this region. 
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CHAPTER 1 – BACKGROUND AND INTRODUCTION 

Human activities have modified the majority of the Earth’s land surface (Vitousek et al. 1997; 

Ellis and Ramankutty 2008; Ellis et al. 2010; Ellis 2019). The ensuing loss and fragmentation of 

habitat for wildlife has been, and remains, the main driver of biodiversity loss in the world 

(Wilcove et al. 1986; Brooks et al. 2002; Pimm et al. 2014; Haddad et al. 2015; Valiente-Banuet 

et al. 2015). With the human footprint still growing, understanding the function of remnant 

habitat patches, the role of protected areas, and the adaptability of wildlife to human-

dominated landscapes is fundamental for species conservation in the long-term. 

Prevailing frameworks for understanding community dynamics in fragmented landscapes 

extend from island biogeography theory (Diamond 1972; Diamond 1975; Brown 1986; 

Lomolino and Perault 2001) and metapopulation theory (Levins 1969; Hanski and Gilpin 1991; 

Hanski 2001; Akçakaya et al. 2007).  These theories stimulated considerable attention on the 

size, arrangement and isolation of islands (or by extension habitat patches), with 

metapopulation theory adding a focus on connectivity among patches (or subpopulations) as 

key to community stability in terrestrial systems (Hansson 1991; Hanski 1999). Further 

developments of both theories added more complexity to the models, considering the rescue 

effect, and other mechanisms that reduces the isolation and increases immigration to forest 

patches (i.e., corridors) (Brown and Kodric-brown 1977; Simberloff and Cox 1987; Saunders 

and Hobbs 1991; Perault and Lomolino 2000) as well as the mainland-island system (Boorman 

and Levitt 1972; Harrison et al. 1988), and the idea of source-sink metapopulations (Pulliam 

1988; Pulliam and Danielson 1991). However, theoretical models assume equilibrium 

conditions whereas human modified landscapes are likely to be in non-equilibrium states 

(Brown 1971; Thomas and Hanski 2004), which introduces the concept of extinction debt, an 

irreversible loss of species that follows a prolonged transient or delay after the habitat 
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destruction (Loehle and Li 1996; Hanski and Ovaskainen 2002). Given that a loss of biodiversity 

might alter ecosystem processes and change the resilience of ecosystems to environmental 

change (Chapin III et al. 2000), identifying thresholds in habitat amount or connectivity that 

support species richness, abundance or functional diversity (Andrén 1994; Michalski and Peres 

2005; Pardini et al. 2010; Estavillo et al. 2013; Magioli et al. 2015; Ochoa-Quintero et al. 2015; 

Muylaert et al. 2016) may be crucial for conservation planning.   

 

The creation and adequate management of protected areas is one way to increase the 

persistence of animal populations in fragmented landscapes. Protected areas have diverse 

origins, but many of them are being now managed to maintain or enhance biodiversity value 

(Jepson et al. 2011). However, some species, such as large mammals, require large home 

ranges, and often protected areas are not big enough for protecting populations of those 

species (Newmark 1993; Hilty et al. 2006). Connectivity, which is defined by the degree to 

which the landscape impedes or facilitates movement among resource patches (Taylor et al. 

1993), plays an important role in maintaining viable populations for many wide-ranging species 

(Carroll 2006; Crooks and Sanjavan 2006; Paul C. Paquet et al. 2006). There are primarily two 

components of connectivity: structural, which represents the spatial arrangement of different 

types of habitats or other elements in the landscape, and functional, representing the behavior 

responses of individuals, species or ecological processes to the landscape structure (Crooks 

and Sanjavan 2006). Also, functional connectivity might be separated into potential 

connectivity, based on the organism’s dispersal ability, and actual connectivity, when the 

movement of individuals through a landscape is quantified (Fagan and Calabrese 2006). 

The identification of biodiversity hotspots is another alternative for setting priorities for 

conservation (Reid 1998; Myers et al. 2000). The Neotropical region has seven out of the 25 

biodiversity hotspots, which concentrate nearly 35% of all vertebrate endemic species and 
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exceptional undergoing loss of habitat (Myers et al. 2000). Brazil’s Atlantic Forest is among the 

five richer hotspots in number of endemic plants and vertebrates (Myers et al. 2000), and it is 

one of the most threatened tropical forests in the world, with around 12% of its original extent 

left and more than 80% of the fragments smaller than 50 ha (Ribeiro et al. 2009). This 

fragmentation scenario over the entire biome poses additional threats to many vertebrate 

species, and based on allometric theory which predicts that larger species require larger 

amounts of habitat (Jetz et al. 2004), any assessment of habitat function and connectivity 

involving communities require consideration and integration over multiple spatial scales. 

Many studies focused on landscape connectivity analysis for single species, usually building a 

model for wide-ranging and often large-bodied species, assuming that conservation of these 

umbrella species – species with large area requirements, which if given sufficient protected 

habitat area, will bring many other species under protection (Noss 1990) – will also facilitate 

conservation of small and less mobile species (Castilho et al. 2015; Pitman et al. 2017). An 

application of a multispecies landscape connectivity analysis showed that building separate 

scenarios for carnivore and herbivore mammals could be an effective alternative for 

considering more species (Brodie et al. 2015). However, there are few attempts in empirically 

evaluating the effectiveness of areas indicated as corridors for wide-ranging species (e.g., large 

carnivores) to other species (e.g., smaller carnivores and herbivores). For instance, what may 

be a corridor for some species, might be a filter – dispersal route more restrictive than a 

corridor – for others, such that many species or functional groups might be present in both 

sides of a filter, while others are absent on either side (Lomolino et al. 2017). 

Altered species interactions might further degrade natural systems in fragmented landscapes 

(Valiente-Banuet et al. 2015), although a species impact on ecosystem function might be 

compensated for by other species in the community. An ecological guild is a group of species 

that exploits the same class of environmental resources in a similar way (Root 1967), which 
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provides a useful framework for assessing redundancies in ecological function among species 

and elucidate potential changes in ecosystem impacts from changes in species diversity. 

Although many different classifications of species guilds exist (Simberloff and Dayan 1991), the 

use of the original concept might indicate whether species interactions are being lost. For 

instance, the extinction of top predators may destabilize ecosystems and initiate trophic 

cascades (Ripple and Beschta 2006; Beschta and Ripple 2009; Wallach et al. 2015), as has been 

exemplified with the case of wolf-deer-vegetation interaction in Yellowstone National Park 

(Smith et al. 2003; Ripple and Beschta 2012; William J. Ripple et al. 2014). Similarly, it has been 

pointed out that seed dispersal interactions involving large-sized fruits and birds have been 

lost in fragments smaller than 10,000 ha in the Brazilian Atlantic Forest (Emer et al. 2018). 

Considering that more than 65% (reaching more than 80% in some regions) of the wood 

species are endozoochorous in tropical rainforests such as the Atlantic Forest (Almeida-Neto et 

al. 2008), the loss of frugivores might represent a decline in dispersal and gene flow for many 

plant species. Therefore, evaluating how each guild (e.g., trophic guild) is affected in 

fragmented landscapes is a complementary approach to assessing the habitat use by each 

individual species. 

 

In human-dominated landscapes factors such as hunting, logging, fires, pollution, and presence 

of domestic/feral dogs can interact synergistically with habitat loss and fragmentation to 

reduce habitat quality, animal fitness, and species diversity (Laurance 2008; Zapata-Ríos and 

Branch 2016). Anthropogenic activities might impact medium and large-mammal populations 

direct or indirectly (Redford 1992). Direct persecution is often an important threat to many 

carnivore species, often occurring in retaliation for real or perceived threats to livestock 

(Jedrzejewski et al. 2017). Carnivore mammals might also be impacted from indirect effects, 

such as human hunting pressure on their prey species, considering that the availability of 
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suitable prey is a key determinant of carnivore occurrence and abundance (Karanth et al. 2004; 

Henschel et al. 2011). At the same time, frugivore populations might be impacted by legal or 

illegal exploitation of forest resources, such as fruits, nuts (Redford 1992), and palm-heart, a 

common illegal activity in some regions as the Brazilian Atlantic Forest (Galetti and Fernandez 

1998). Obtaining a quantitative measure of hunting pressure is often challenging; for this 

reason, many studies used proxies to poaching pressure, such as number of occasional 

encounters with poachers, traps, or hunting dogs during fieldwork (Chiarello 2000; Cullen et al. 

2000; Cullen Jr et al. 2001) or by park rangers and other researchers (Galetti et al. 2009; Xavier 

da Silva et al. 2018), interviews (Michalski and Peres 2005; Sampaio et al. 2010), and poacher 

seizure records (Ghoddousi et al. 2017). As poaching and hunting rates usually increase in 

areas closer to roads, and settlements (Lyon and Burcham 1998; Gratson and Whitman 2000; 

Burton et al. 2012), showing a markedly decrease in bird and mammal abundances (Benítez-

López et al. 2017) another possible approach is to consider these variables as proxies to 

poaching pressure. The use of camera traps might also bring another possibility of using the 

detections of people as a proxy to the ease of access of the area, which might correlate with 

poaching pressure. If this is true, hunted species might show behavioral and population 

differences in areas accessed or not by humans. 

 

Domestic or feral dogs – the latter considered as individuals not associated with people or 

human settlements – also have been shown to negatively influence the presence of herbivore 

and carnivore mammals in native habitats (Silva-Rodríguez and Sieving 2012; Zapata-Ríos and 

Branch 2016). In many regions, and especially in tropical regions, it is common that dogs 

engage in some form of free-ranging behavior regardless of being owned (Vanak and Gompper 

2009). Free-ranging dogs usually interact with wildlife (Hughes and Macdonald 2013), including 

as predator (Campos et al. 2007; Young et al. 2011), prey (Edgaonkar and Chellam 2002; Butler 
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et al. 2004), competitor (Vanak and Gompper 2010), and disease reservoir and vector 

(Cleaveland et al. 2000; Funk et al. 2001; Fiorello et al. 2004). For this reason, addressing the 

degree to which native mammals interact with domestic dogs (e.g., avoiding or not) is a 

relevant aspect to be addressed in human-dominated landscapes to consider management 

options in the case of negative impact of domestic dogs on wildlife. 

Numerous studies have focused on medium and large mammal populations inside protected 

areas (Martins et al. 2008; Wearn et al. 2013; Ferreira et al. 2017; M. Galetti et al. 2017; 

Mariana B. Nagy-Reis et al. 2017), but understanding how landscape and disturbance factors in 

protected areas affect mammals across fragmented landscapes is needed to direct policy 

efforts towards their conservation. For this reason, this dissertation focused on studying forest 

remnants inside and among protected areas, encompassing a landscape with varying levels of 

amount of forest in different regions, and human disturbances. Moreover, many previous 

studies addressing the relationship between landscape factors (e.g., forest amount, patch size, 

and isolation) and biological variables (e.g., species richness) or the interactions of disturbance 

factors and native species habitat use did not consider the problem of imperfect detection, 

which is often less than one, and might bias parameter estimates (MacKenzie et al. 2002; 

Guillera-Arroita et al. 2014). The probability of detecting an individual can vary among species, 

observers, survey methods, and sites (Iknayan et al. 2014; MacKenzie et al. 2018).  Hierarchical 

multispecies occupancy models that incorporate both the detection process and the 

occurrence state provide a promising way forward, because they lead to a process-driven 

estimate of diversity through the delineation of the biological and sampling processes (Iknayan 

et al. 2014) 

This dissertation evaluates different drivers of mammalian communities in a highly fragmented 

Atlantic Forest landscape, where forest amount has remained fairly stable since at least 1985. 
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Mammals’ taxonomic classification follows the document elaborated by the Brazilian 

Mastozoology Society (Abreu et al. 2021). In chapter 2, “Domestic dogs and humans in Atlantic 

Forest remnants: spatial and temporal implications for native mammals”, I test whether 

domestic dogs and/or humans influence spatial or temporal use of habitat by mammals of 

distinct trophic guilds (frugivores, omnivores, carnivores, insectivores, and herbivores). By 

using dynamic two-species occupancy models it was possible to infer that a few mammal 

species showed spatial changes in terms of their probability of use of forest remnants when 

domestic dogs and or/humans were present compared when one or both species were absent. 

Other species, however, showed a temporal change in their habitat use (cases when the 

detection probability decreased when domestic dogs and/or humans were detected in a 

certain occasion). No species showed changes in their activity patterns (temporal change) but 

this could be due to the wide use by domestic dogs and humans in the studied landscape (a 

situation that is very likely to expand to most of the Atlantic Forest biome). 

 

In chapter 3, “Scale affects how forest cover influences apparent community shifts in Atlantic 

Forest mammals in Southeastern Brazil”, I used multispecies occupancy models to test how 

forest proportion in landscapes with different areas (multiscale approach) influenced medium 

and large mammal community habitat use, while controlling for non-target variables that had 

a large variation across the studied landscape (e.g., elevation, and human footprint). This 

multiscale approach made it possible to detect that the shift in habitat use by forest-

dependent versus generalist species is highly dependent upon scale of observation, so 

selecting the best scale for the studied community is paramount for a more accurate 

assessment of how forest amount in landscapes influence these two groups of mammal 

species. In this study a proportion of forest much higher than what the literature reports 

(studies that usually do not evaluate different scales or use a limited number of scales) was 
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found, which is relevant for the mammal community conservation planning in anthropogenic 

landscapes. 

 

In chapter 4, “Evaluating multispecies connectivity in a human-dominated landscape in Atlantic 

Forest, Southeastern Brazil”, I evaluated whether forest remnants important for the 

connectivity of multiple mammal species (frugivores and carnivores) were already included in 

the protected areas across the studied landscape. Using graph theory I identified the most 

important forest patches for connectivity for the forest-dependent mammals and found 

observed considerable variation of areas important for connectivity for different species. This 

distinction was larger when we compared species of one trophic guild to another, which 

indicates the benefit of including multiple species, specially of different trophic guilds, when 

evaluating the most important areas for connectivity when conservation of the medium and 

large-mammal community is the aim. Although many areas important for connectivity are 

already protected (i.e., inside protected areas), a large proportion of these areas still can be 

managed, and important forest patches could be lost considering that more than half of the 

area is inside private properties. Therefore, planning of landscapes outside protected areas is 

paramount for the conservation of forest-dependent mammal species in the long term. 
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CHAPTER 2 – DOMESTIC DOGS AND HUMANS IN ATLANTIC FOREST REMNANTS: SPATIAL AND TEMPORAL 

IMPLICATIONS FOR NATIVE MAMMALS 

ABSTRACT 

Since human-dominated landscapes have become widespread worldwide, species have not 

only to deal with the consequences of both habitat loss and fragmentation but also must face 

the spread of invasive species as well as the presence of human beings in many forest 

remnants. In this chapter I aimed to evaluate how Atlantic Forest native mammal species are 

spatial or temporally influenced by the presence of domestic dogs or humans in forest 

remnants. I sampled 112 camera trap sites across an Atlantic Forest landscape in Southeastern 

Brazil between September 2018 and May 2019 and selected the mammals most detected 

(N>90) for this study. Dynamic two-species occupancy models were applied to each pair of 

species being a native mammal species and domestic dogs or humans as the closure 

assumption was not met. The coefficient of overlapping was used to investigate the overlap of 

activity patterns between pairs of species (domestic dogs or humans and each native mammal 

species). Housing density was the most important covariate for almost all species pairs. Some 

species such as ocelots and oncillas showed the predicted patterns of avoiding domestic dogs 

or humans, while others had a positive co-occurrence with dogs: crab-eating fox, paca, and 

deer or humans: crab-eating fox, paca, oncilla, and deer. These species except for deer had a 

very low activity overlap with dogs or humans, which could indicate a temporal avoidance. 

Deer was the only species to have a positive co-occurrence and high activity overlap with dogs 

and humans, which could be due to the avoidance of its main predator in the area of study, 

the puma (Puma concolor), which respond responded negatively to the housing density 

covariate.  
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INTRODUCTION 

Human activities have modified more than 75% of the Earth’s land surface (Vitousek et al. 

1997; Ellis and Ramankutty 2008; Ellis et al. 2010). Human-dominated ecosystems are 

increasingly common (Romero-Lankao and Dodman 2011; Fragkias et al. 2013; Jacobson et al. 

2019), with lands transformed to better accommodate humans contributing to ongoing habitat 

loss and fragmentation —two of the primary forces driving the biological diversity crisis 

worldwide (Wilcove et al. 1986; Vitousek et al. 1997; Brooks et al. 2002; Pimm et al. 2014; 

Haddad et al. 2015). Domestic dogs (Canis familiaris) have followed human population trends 

in terms of increasing their numbers in human-dominated regions (Butler and Bingham 2000; 

Espartosa 2009). The global dog population is estimated to be larger than 700 million 

individuals (Hughes and Macdonald 2013). In many parts of the world, domestic dogs are 

essentially free-ranging animals (Wandeler et al. 1993; Boitani and Ciucci 1995; Slater 2001; 

Vanak and Gompper 2009), whose presence may interact synergistically with habitat loss and 

fragmentation to further degrade habitat quality, animal fitness, and species diversity 

(Laurance 2008; Zapata-Ríos and Branch 2016).  

Many vertebrates are negatively impacted by the presence of dogs.  Direct predation is the 

most common threat posed by dogs to vertebrates, and mammals are the taxonomic group 

most threatened by dogs (Silva-Rodríguez and Sieving 2012; Lessa et al. 2016; Doherty et al. 

2017). Native mammals may adjust their behavior in time or space to reduce encounters with 

people or dogs (Berger 2010; Darimont et al. 2015), such as increasing time spent in secure 

refuge habitats.  Such behavioral adjustments to perceived risk may come at a cost in terms of 

reductions in daily foraging time (Ripple and Beshta 2004; Stephens et al. 2007; Creel and 

Christianson 2008; Berger 2010; Benítez-López 2018; Gaynor et al. 2018). For medium- to 

large-bodied carnivores, the presence of free-ranging dogs may pose less of a direct predation 
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risk than a force of competition that could reduce prey encounter rates (Vanak and Gompper 

2009), constrain habitat selection (Vanak and Gompper 2010), or limit their spatial distribution 

(Ritchie and Johnson 2009). Importantly, the behavioral adjustments wild animals make in 

response to people or dogs, whether in space or time (Berger 2010; Zapata-Ríos and Branch 

2016), may decouple apparent habitat quality from realized habitat use, especially given the 

lack of reliable information on the drivers of space use by dogs in different landscape contexts.  

Assessment of species co-occurrence may reveal the degree to which inter-specific 

interactions help shape species distributions (Schoener 1974a; Rosenzweig 1995; Davis et al. 

2018; MacKenzie et al. 2018)—from predator effects on prey distribution (Weterings et al. 

2019; Smith et al. 2020), to competitive suppression (Cruz et al. 2018; Davis et al. 2018), and 

even facilitative interactions, in which at least one of the species is benefited and cause no 

harm to neither (Kowalczyk et al. 2008; Goyert et al. 2014; Crego et al. 2016).  The majority of 

research on free-ranging dogs has focused on the direct risk of predation in natural areas 

(Young et al. 2011; Hughes and Macdonald 2013). Co-occurrence models indicate that many 

native mammals tend to use areas where dogs occur less often than expected (Soultan et al. 

2021), with dogs replacing native species (i.e., carnivores) in forest remnants closer to villages 

(Lacerda et al. 2009; Farris et al. 2016; Farris et al. 2017). Many of these studies, however, 

have focused on reserves only (Srbek-Araujo and Chiarello 2008; Lacerda et al. 2009; Lessa et 

al. 2016; Massara et al. 2016; Paschoal et al. 2018; Coronel-Arellano et al. 2021), and 

information is needed both in protected and unprotected landscapes, as well as alternative 

ecological (e.g., tropical versus temperate forests) and cultural (e.g., variation in dog-keeping 

practices) contexts, to understand the role of free-ranging dogs in structuring species 

distributions. Importantly, whether evaluating spatial avoidance or numerical suppression, 

methods should account for the imperfect detection of both dogs and the target mammal 

species (MacKenzie et al. 2018). Moreover, studies evaluating species responses to dogs 
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should evaluate temporal changes in behavior as an alternative mechanism to spatial 

avoidance as a means of evading the threats posed by dogs (Lima and Dill 1990; Werner and 

Anholttt 1993; Lima 1998a). 

Free-ranging dogs have long been a concern within Brazil’s Atlantic Forest (Paschoal et al. 

2016), which is among the five richest hotspots with respect to endemic plants and vertebrates 

(Myers et al. 2000) while also being one of the most threatened tropical forests in the world.  

Only ~12% of the original extent of Atlantic Forest remains, and more than 80% of the forest 

fragments are smaller than 50 ha (Ribeiro et al. 2009)—making patches of Atlantic Forest 

especially vulnerable to the external pressures posed from dogs and other non-native 

mammals, including people. Among the world’s biodiversity hotspots in 2000, the Atlantic 

Forest hosted the highest proportion of urban area with an expected 200% increase in urban 

extent by 2030 (Seto et al. 2012). Although the direct “urban” footprint within the Atlantic 

Forest remains concentrated and rather small, the effect of urban areas is compounded by 

associated infrastructure connecting urban settings and contributing to additional habitat loss 

and fragmentation throughout the region (Seto et al. 2012). The effect of free-ranging dogs, 

despite being the most abundant carnivore in several natural areas (Paschoal et al. 2012; 

Hughes and Macdonald 2013), has not been fully evaluated within the Atlantic Forest and 

other regions. Dogs are among the most detected mammal species in Atlantic Forest remnants 

(Paschoal et al. 2012; Paschoal et al. 2018; Ribeiro et al. 2018), where they are commonly 

observed to exert negative effects on wild carnivores, yet information for other groups of 

species (e.g., frugivores or herbivores), in both space and time, require further investigation. 

Herein, I evaluated how a suite of medium and large-bodied native mammals responded 

spatially or temporally to the presence of humans and free-ranging dogs in forest remnants 

across the Atlantic Forest in southeastern Brazil.  Fundamentally, I expected that mammals 
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persecuted by dogs or humans (e.g., pacas, armadillos) may be unable to avoid these threats 

spatially and instead would exhibit patterns of temporal avoidance. However, I expected those 

patterns to vary among species such that meso-predators and dogs may exhibit spatial 

avoidance instead. Overall, I expected native mammals to exhibit increasing nocturnal patterns 

of activity in areas predicted to have a high probability of use by dogs or humans (Gaynor et al. 

2018).   

METHODS 

STUDY AREA 

My 66,870 km2 study area was situated in the Atlantic Forest biome of southeastern Brazil, in 

São Paulo and Minas Gerais states (Figure 1). The study area encompassed 5 major 

metropolitan areas: São Paulo, Baixada Santista, Campinas, Vale do Paraíba and Litoral Norte, 

and Sorocaba metropolitan regions, where human populations ranged from 1.7 to more than 

20 million (IBGE 2010). The landscape also included part of the largest remaining Atlantic 

Forest remnant, Serra do Mar, situated close to the coast. 

This biome has a long history of deforestation, with urban areas being identified as early as the 

eighteenth century (Ellis et al. 2010), and experienced a massive agricultural expansion since 

the sixteenth century, followed by industrialization and urban expansion starting in the 

nineteenth century (Dean 1995).  Although urban areas are expected to cover an additional 2-

3.3% of the biome by 2030 (Seto et al. 2012), for the most part I consider this landscape an 

“after-math” forest. Massive deforestation halted ~1985 (Souza et al. 2020). Since then, forest 

changes have been relatively minor in my study area compared to elsewhere in the Atlantic 

Forest, and minor forest gains (via restoration) have been greater than forest loss (Lira et al., 

2012; Souza et al., 2020; Silva Junior et al., 2020), and since ~1985, the average yearly rate of 
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change in forest cover has been negligible to slightly positive, +0.05 (Souza et al., 2020).  As a 

result, I consider the extent of existing forest patches and their landscape context to have 

remained fairly stable over the past 30+ years – making this area a useful model system for 

considering the long-term behavioral and spatial responses of wildlife to forest fragmentation.     

Six climates occur across the studied landscape following Köppen’s classification: Cfb (36.21% 

of the landscape), Cfa (26.97%), Cwb (22.42%), Cwa (6.71%), Af (6.27%), and Am (1.40%), 

where Cf stands for humid subtropical, oceanic climate without dry season, Cw stands for 

humid subtropical climate with dry winter, and with hot summer (a) or with temperate 

summer (b), and A indicates tropical climate without dry season (f) or monsoon (m) (Alvares et 

al., 2013). Across ~92% of the area of study, the average temperature in the hottest month is 

above 22°C and the average temperature in the coldest month is between -3°C and 18°C. The 

average precipitation in the driest month varies from 25 mm to 60 mm across the whole area. 

The average annual precipitation is about 1,300-1,400 mm, with seasonal variations, between 

April and August being the driest months (Alvares et al. 2013).  

DATA COLLECTION 

I documented habitat use and activity patterns by native wildlife, dogs, and humans using 

passive infrared trail cameras.  I selected 30 x 30 km sample units that varied in the 

proportional coverage of forest: (1) <20%, (2) 20-40%, (3) 40-60%, (4) 60-80%, and (5) >80%, 

housing density (0 – 729 houses/km2), and road density (0 – 0.78 road km/km2). Density 

calculations were conducted within a circular radius of 2000 m centered in each potential 

sample unit. A total of 112 sample units were selected, each having 1 camera trap deployed 

from September 2018 to May 2019 (4 traps ultimately were stolen so their duration was 

truncated). Within each survey unit, the camera was placed as centrally as possible, within a 

forest remnant (minimum size = 17 ha), and more often on a trail (59%) than off trail (41%).  
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Four camera brands were deployed: Bushnell Trophy Cam (models 119636, 199537, 119736, 

119774, 119776), Moultrie (MCG13183, 990i, 1100i), Browning Dark OPS HD, and Spypoint 

Solar, with the largest number of cameras of the same model being Browning Dark OPS HD 

(N=25), and Bushnell 119537 (N=23). The other models used varied from two cameras 

(Spypoint solar) to 13 cameras (Moutrie 1100i). All camera trap models used were infrared 

models with video trigger speed of less than 3 seconds. Four models had trigger speed faster 

than 1 second (Spypoint Solar, Browning Dark OPS HD, Bushnell 119774, and 119776), with the 

others having slower trigger speeds for videos. The choice of deploying a slow versus fast 

trigger camera traps was random across the gradient of forest amount (Appendix 1). All 

cameras were fixed at 30-40 cm above ground and were not baited. Cameras were set to take 

videos with the fastest recovery time available for each model (usually up to a few seconds).  

I retained for analysis all species having ≥ 59 total detections (considering the maximum of one 

detection by one-week occasion by site). Number of detections varied from 59 simultaneous 

detections of dogs and humans (when both species were detected on one occasion) to 214 

detections of humans. Native mammal detections fell between 92 (L. pardalis) and 158 

(Dasypus spp.). In this region there were two species each of armadillo (Dasypus novemcinctus, 

and D. septencinctus) and deer (Mazama gouazoubira and M. americana) that could not be 

reliably classified to species by visual appearance alone (Reis et al. 2010; Duarte et al. 2012; 

Grotta-Neto et al. 2019), which were classified to genus level only.  This process yielded for 

analysis 1 insectivore (Dasypus spp.), 1 herbivore (Mazama spp.), 1 frugivore (paca, Cuniculus 

paca), 1 omnivore (crab-eating fox, Cerdocyon thous), and 2 carnivores (ocelot, Leopardus 

pardalis and oncilla, Leopardus guttulus). Records of domestic dogs (N = 209 detections) and 

humans (N = 214 detections) were also retained (Table 1).  
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DATA ANALYSIS 

Collectively, I interpreted spatial occupancy patterns and temporal activity patterns as 

indications of whether and how native mammals responded to the risks imposed by people 

and dogs – anticipating either no behavioral response, movement to avoid risk, or adaptation 

in place by shifting temporal activity patterns to avoid risk (Table 2).   

HABITAT USE PATTERNS 

I quantified spatial patterns of animal occurrence, and the interactive influences of dogs and 

humans on space use by native mammals, using occupancy models.  Given the 9-month survey 

duration, which crossed both the wet and dry seasons, I employed multi-season occupancy 

models.  These models employed a robust design where seasons (year) represented the 

primary sampling periods and survey intervals (week; see below) represented the secondary 

sampling periods (MacKenzie et al., 2018, 2003). As I could not ensure closure to changes in 

occupancy for the duration of the study, I interpreted the estimated probability of occupancy 

(𝜓) as the initial probability of use within time t, i.e., the probability of occupancy of one 

species in one time interval does not depend upon its occupancy status in the previous time 

interval (Mackenzie and Royle 2005). Models were fit using the packages RMark (Laake and 

Rexstad 2017) and RPresence (Hines 2006) for R (R Core Team 2019).  Akaike’s Information 

Criterion (AIC) was used to rank and compare alternative models (Burnham and Anderson 

2002).      

Initially, I fit single species models using alternative durations (i.e., 1 day to 2 weeks) for the 

secondary survey intervals, and, lacking a better tool, used the estimate of over-dispersion (�̂�) 

to choose the optimal sampling interval across species (Burnham and Anderson, 2002; 

MacKenzie et al., 2018).  I ultimately selected a 1-week sampling interval, which yielded �̂� ≈
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1.0 for domestic dogs and humans while indicating under-dispersion for all native mammals (-

1.7 < ĉ < 0.1).  Finer sampling intervals tended to yield overdispersion for native mammals, 

e.g., 1-day sampling intervals yielded �̂� ≥ 3.7.  In contrast, intervals longer than 1 week yielded 

under-dispersion for all species including dogs and humans. As overdispersion is more 

common, several approaches for addressing it have been developed, e.g., negative binomial 

distribution, or quasi-likelihood in frequentist analyses (Burnham and Anderson 2002; Kéry and 

Royle 2016; MacKenzie et al. 2018). However, the usual advice to under-dispersion is to ignore 

it, although it is known that the uncertainty assessments will be too pessimistic, e.g., SEs 

become too wide (Kéry and Royle, 2016). 

Using the 1-week sampling interval, I initially explored single species models to determine 

whether camera placement (on trail=1 or off trail=0), or camera functionality (fully 

functional=0, periods of malfunction=1) or camera trigger speed (slow=0, fast=1) affected a 

species’ probability of detection. Only a few cameras intermittently malfunctioned (mainly in 

the infrared, preventing the record of nocturnal records). Preliminary analyses indicated that 

on/off trail should be retained as a covariate informing detection probability, but camera 

functionality, and trigger speed should not (ΔAIC > 7 when camera functionality compared to 

the global occupancy model lacking this variable). In the case of trigger speed, although one 

species (ocelot) had its detection probability decreased when using slower trigger cameras, the 

relationships of the variables with occupancy probability kept the same, and this covariate was 

no further included. 

Next, I fit dynamic, two-species models to investigate whether the presence of domestic dogs, 

humans or both (when both species were detected in the same one-week occasion) influenced 

the probability of detection (p) or site use (𝜓) of native mammals. Employing the conditional 
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(𝜓Ba/rBa) formulation of Richmond et al. (2010), the parameters estimated for occupancy 

probability under this model include:  

• 𝜓A = probability that the area is initially (time t) occupied by the dominant species, 

• 𝜓Ba = probability that the area is initially occupied by the subordinate species when 

the dominant species is absent, and 

• 𝜓BA = probability that the area is initially occupied by the subordinate species when 

the dominant species is present. 

Parameters representing colonization (γ) and extinction (ε) probabilities were also estimated: 

• 𝛾BA = probability that the site was colonized by species B in the interval t to t+1 given 

species A was present in survey t, 

• 𝛾Ba = probability that the site is colonized by species B in the interval t to t+1, given 

species A is absent in survey t, 

• 𝜀BA = probability that species B failed to re-use a site in the interval t to t+1 when 

species A was present, and 

• 𝜀Ba = probability that species B failed to re-use a site in the interval t to t+1 when 

species A was absent. 

Importantly, 𝛾 and 𝜀 were considered nuisance parameters (i.e., artifacts from the need for a 

dynamic model given the long-time survey duration) rather than biologically meaningful 

parameters of interest.  Estimates for detection probability included:  

• rA = probability of dominant species being detected when the subordinate species is 

present, 

• pA = probability of dominant species being detected when the subordinate species is 

not present, 
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• pB = probability of subordinate species being detected when the dominant species is 

not present, 

• rBA = probability of subordinate species being detected when the dominant species is 

present and detected, and 

• rBa = probability of subordinate species being detected when the dominant species is 

present but not detected. 

I tested the effects of three landscape covariates on 𝜓, 𝛾, and 𝜀:  proportion of forest, housing 

density, and road density (Table 2), as described next.  Observed responses of organisms to 

their environment, and interactions among species, depend fundamentally on the scale of 

animal perception (Boscolo and Metzger 2009; Lyra-Jorge et al. 2010; Lesmeister et al. 2015; 

Nagy-Reis et al. 2017).  For this reason, I considered alternative measurement scales (i.e., 

extents) that were, for each species, roughly equivalent to: (1) minimum home range size, (2) 

half the minimum range size, and (3) double the minimum home range size (Wiens 1976; 

Turner and Gardner 2015). For armadillo, deer, paca, and domestic dogs, I used radii of 0.25, 

0.5, and 1 km, while for crab-eating fox, ocelot, and oncilla I used radii of 0.5, 1, and 2 km 

(Beck-King and von Helversen 1999; Beisiegel 1999; Meek 1999; Bond et al. 2000; Juarez and 

Marinho-Filho 2002; Di Bitetti et al. 2006; Black-Décima et al. 2010; de Oliveira et al. 2010; 

Kasper et al. 2013; Dürr and Ward 2014; Gutierrez et al. 2016). For humans, who easily moved 

throughout the landscape on roads, I used radii of 1, 2, and 4 km. Within buffers defined by 

each of these radii, centered on camera locations, I calculated the proportional coverage of 

forest from reclassified Landsat 7 images (ETM+ sensor, 30 m resolution; (MMA/PROBIO, 

2007). Road layers were provided by the Brazilian Ministry of Environment, and density was 

calculated using the density tool in ArcGIS 10.6.1, yielding linear km of road per square km. 

Likewise, I used the density tool to calculate the number of houses per square km from the 
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number of houses in each census sector within the national census data, acquired from 

Instituto Brasileiro de Geografia e Estatística (IBGE 2010). 

To identify the best scale for each variable and species pair, I fit alternative candidate models 

and compared them using AIC. Candidate models included spatial covariates (percentage 

forest cover, housing density, and road density) on 𝜓, 𝛾, and 𝜀 while controlling for the effects 

of on/off trail on p.  At this stage, candidate models differed only in the scale at which each 

landscape covariate was measured.  To guard against multi-collinearity, I did not include pairs 

of variables having Pearson r > 0.7 when P < 0.05; (Dormann et al., 2013).  The only 

problematic pairing was housing density (1 km) and road density (2 km), which were not 

allowed within the same candidate model.  After identifying the appropriate scale of analysis 

for each landscape variable, full model selection proceeded as described next.   

Full models were built assuming either that occupancy, colonization, and extinction of the 

subordinate species was influenced by the dominant species (𝜓BA ≠ 𝜓Ba, 𝛾BA ≠ 𝛾Ba, and 𝜀BA 

≠ 𝜀Ba) or remained independent of the dominant species (𝜓BA = 𝜓Ba, 𝛾BA = 𝛾Ba, and 𝜀BA = 

𝜀Ba). Following the secondary candidate set strategy (Morin et al., 2020), model selection 

proceeded in four steps: modeling 𝜓, then 𝛾, then 𝜀, and, finally all parameters at once (overall 

modeling). Non-modeled parameters in the first three steps were set to null (not influenced by 

any covariate), and models for 𝜓, 𝛾, or 𝜀 having ΔAIC < 5 were kept for the overall modeling 

step. 

From the best overall model, I calculated the species interaction factor (SIF) for occupancy as: 

(

 𝜈 = 

𝜓BA

(1 − 𝜓BA)

𝜓Ba

(1 − 𝜓Ba))

  



21 

 

which indicates whether the two species occurred at sites independently of each other (𝜈 = 1), 

co-occurred less often than expected under independence (i.e., avoidance; 𝜈 < 1), or co-

occurred more often than expected under independence (𝜈 > 1). The same equation 

(substituting 𝜓BA and 𝜓Ba for rBA and rBa) was applied to detection probability to calculate 

𝜌, which indicates the level of dependence in the detection of the two species such that 

detections of the target species (B) may be independent from (𝜌 = 1), less likely (𝜌 < 1) or more 

likely (𝜌 > 1) when the dominant species (A) is present (MacKenzie et al. 2018). 

TEMPORAL ACTIVITY PATTERNS 

To quantify daily activity patterns, I recorded the time of day of each species detection. Given 

the long survey duration, I transformed clock time to sun time (Nouvellet et al. 2012). For this 

analysis, I further considered records separated by ≥60 min to be independent detections 

(Romero-Muñoz et al. 2010; Porfirio et al. 2016).   

For each species, daily activity patterns were quantified using kernel density functions (Ridout 

and Linkie 2009).  The overlap coefficient (∆), ranging from 0 (no overlap) to 1 (identical 

activity patterns) (Ridout and Linkie, 2009), was used to compare activity patterns between 

either dogs or humans and each of the native mammal species. For species with large samples 

sizes (≥75 independent observations), I applied ∆4 and a smoothing parameter of 1, else I 

applied ∆1 and a smoothing parameter of 0.8 (Ridout and Linkie 2009; Meredith and Ridout 

2018). The 95% confidence intervals for ∆4 and ∆1 were calculated using a smoothed 

bootstrap with 10,000 resamples.  

In addition, I split camera sites into low versus high disturbance (based on the predicted 

probability of use by dogs or humans from the occupancy analysis) and applied a non-

parametric Watson’s two sample test (Pewsey et al. 2013) to evaluate whether species 
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exhibited significantly different activity patterns under these differing levels of risk.  These 

analyses were conducted in the R environment v. 3.6.0 (R Core Team, 2019) using the overlap 

package to calculate overlap coefficients (Meredith and Ridout, 2018), and the circular 

package to determine whether two activity patterns were statistically different (Agostinelli and 

Lund 2017).  Ultimately, I interpreted a shift in activity patterns either spatially (high versus 

low disturbance) or temporally (dog or human versus native mammal) as evidence of species 

exhibiting a risk-sensitive behavioral adaptation (Table 2). 

RESULTS 

From the 112 camera trap locations, I analyzed 12,481 camera trap days and recorded 92-158 

overall detections of six native mammals (Table 1). Single species occupancy models indicated 

that placement of camera traps on trails positively influenced detection probabilities for all 

species except deer (Table 1). Models further indicated that the estimated probabilities of site 

use were considerably higher for dogs and humans (61-92% of sites) than observed for any of 

the native forest mammals (26-55% of sites; Table 1).  Whereas the estimated extinction 

probability was larger than colonization probability for nearly all species, this may simply 

reflect cyclical space use differences (e.g., seasonal range shifts) rather than long-term trends 

in space use. 

Two species models indicated that, when factoring in the presence of dogs or humans, site use 

was driven by landscape patterns on a scale equivalent to or larger than a species home range 

(Figure 2; Appendix 2). Housing density was the most important covariate for almost all 

dominant-subdominant species pairs (Figure 3; Appendix 3), except for two pairings (humans 

with either crab-eating fox or armadillo) for which forest proportion had a larger impact than 

housing density (although housing density was still important). In all cases (except for the pair 

ocelot – dogs and humans) the direction of effect of the covariates assumed the dominant 
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species’ responses (dogs or humans), being negative for forest proportion, and positive for 

housing density (Appendix 4). As it is possible to formally test the interaction between 

dominant and subordinate species in co-occurrence models, notably the overall species 

interaction factor was lowest between either dogs or humans and crab-eating fox or armadillo. 

Considering the top models (those with ΔAIC < 2), only paca, deer, and ocelot models indicated 

the species interaction as important in most or all models of co-occurrence with humans or 

dogs (Figure 3; Appendix 3).  

Co-occurrence models indicated spatial avoidance of dogs and humans (either individually or 

in combination) by oncillas, and ocelots (Figures 4 A, B, C). Armadillo and crab-eating fox 

generally exhibited occupancy patterns independent of dogs and humans (Figure 4 A), except 

that armadillo avoided sites where both dogs and humans occurred (Figure 4 C).  Interestingly, 

site use by dogs appeared independent of the presence of humans (Figure 4 B), indicating a 

free-ranging pattern by dogs in the region. Site use was also independent of the presence of 

humans for oncilla and paca (Figure 4 B). However, like armadillo, oncilla avoided sites where 

both dogs and humans occurred (Figure 4 C).  Contrary to expectations, paca and deer 

exhibited a strong and positive spatial association with dogs (Figure 4 A), with deer further 

exhibiting a strong, positive association with dogs and humans collectively (Figure 4 C).  

Armadillo, crab-eating fox, and deer proved less detectable, while paca and oncilla proved 

more detectable, in areas where dogs occurred (Figure 4 D). Moreover, all species except for 

deer (and dogs) became less detectable when humans were also detected at the same 

occasion (Figure 4 E). When both dogs and humans were detected at a given occasion, deer, 

ocelot, and oncilla became more detectable than when only humans or dogs were present 

(Figure 4 F).  However, I note that some species, like deer, had higher detection probabilities in 

the absence of humans altogether (pB > rBA > rBa, Table 3).  Nevertheless, differential 
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detectabilities conditional on the presence of a dominant species may reflect that some 

species take refuge while others get moving to avoid risk.   

Like humans, dogs exhibited a largely diurnal, although less peaked, pattern of activity (Figures 

5 and 6).  And except for deer, most species exhibited a crepuscular to nocturnal activity 

pattern that led to little overlap with humans (Δ = 0.09-0.43).  Native mammals exhibited 

moderate-high overlap in activity with dogs (Δ = 0.33-0.84), greater than that observed for 

humans (Δ = 0.09-0.60). For some species showing positive co-occurrence with dogs or 

humans, e.g., crab-eating fox and paca, I observed low temporal activity overlap (paca-dog, 

33% overlap, Figure 5; crab-eating fox-human, 20% overlap, Figure 6) compared to other 

species. Deer, on the other hand, showed both a positive co-occurrence with dogs and humans 

as well as a high activity overlap (dogs 84%, Figure 5; humans 60%, Figure 6). When comparing 

a given species activity patterns between having low (𝜓<0.55) versus high (𝜓>0.55) predicted 

probabilities of use by dogs or humans, the only species exhibiting a significant shift in activity 

pattern was paca with respect to dogs (Watson’s statistic = 0.49, p-value < 0.001), although 

that shift in activity still corresponded with a strongly nocturnal pattern of behavior 

(Appendices 4, 5) so was unlikely to be driven by dog activity (Figure 5).  

DISCUSSION 

Assessing how predators, competitors and landscape variables influence the distribution, 

habitat use, and activity of species has long held attention in Ecology (Schoener 1974b; Crowell 

and Pimm 1976; Gilpin and Diamond 1982; Connor and Simberloff 1983; Lima 1998b; Gotelli 

2000; Ripple and Beschta 2004).  Much interest has focused on interactions among wild 

species, although an increasing volume of studies documents domestic, free-ranging dogs as a 

concerning pressure affecting wild mammal populations especially across South America. I 

documented differential responses among six mammals native to Brazil’s Atlantic Forest to the 
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presence of dogs, humans, or both—observing a high degree of spatial and temporal exposure 

to what are effectively free-ranging dogs whose patterns of space use were independent of 

that of humans. Space use by dogs strongly reflected housing density, while space use by 

humans was predicted most strongly by road density. Therefore, the overwhelming focus on 

roads as a concentrator of human activities in most studies around the world (Fahrig and 

Rytwinski 2009; Benítez-López et al. 2010; Rytwinski and Fahrig 2012) is not a good 

representation of the potential impacts caused by dogs in areas lacking strict dog-keeping 

standards. Yet, as observed in the Ecuadorian Andes (Zapata-Ríos and Branch 2018), the 

amount of forest cover proved immaterial to dog habitat use—a disappointing result that 

indicates few Atlantic Forest remnants in my study area to be free from the risk posed by dogs.   

Domestic dogs have been reported among the most detected mammal species in forests 

across Chile, Ecuador, and Brazil (Srbek-Araujo and Chiarello 2008; Silva-Rodríguez and Sieving 

2012; Cassano et al. 2014; Zapata-Ríos and Branch 2018), including this present study, 

indicating that dog incursions into natural habitats is a widespread conservation concern.  

While I expected humans and domestic dogs to be common across the region (Torres and 

Prado 2010), I did not anticipate dogs to be far more common (in terms of the frequency of 

their detections) than any native mammal in this study.  Nor did I anticipate dogs to be so 

widespread, including being detected within the largest contiguous and best protected forest 

remnants remaining in the Atlantic Forest biome. Although other studies referred to dogs in 

forest remnants as free-ranging (Belo et al. 2015; Paschoal et al. 2016; Montecino-Latorre and 

San Martín 2019), in this study co-occurrence models verified that dogs use space in a manner 

statistically independent of humans, despite being highly associated with housing density. 

Ultimately, dogs were predicted to occur in about 92% of the studied landscape (humans in 

about 61% of the area), with a minimum predicted probability of use of 41% among the 

sampled sites.  
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The native mammals in this study were inconsistent in their avoidance, either spatially or 

temporally, of dogs and humans. The expectation that armadillos and pacas would be unable 

to avoid dogs and/or humans spatially but instead would exhibit temporal avoidance was 

overall confirmed (except in the pair pacas and dogs). Similarly, as predicted, the felids (ocelots 

and oncillas) avoided dogs and both dogs and humans spatially. Ocelot was the only species to 

spatially avoid all situations when paired with dogs only, humans only or both dogs and 

humans detected at the same occasion. 

Importantly, the mammals in this study generally perceived and responded to landscape and 

anthropogenic variables at extents equal or greater than the minimum home range size, 

suggesting the impacts of humans or dogs often extended further than species’ home ranges. 

Crab-eating fox, armadillo, oncilla, and deer each exhibited higher habitat use and activity 

levels in more developed landscapes, although some (armadillo, ocelot, and oncilla) showed 

lower use when humans or dogs were present, while others (crab-eating fox, armadillo) were 

less detectable when one of those species were present. Two factors, food subsidies and 

predation refugia, likely underlie the pattern of attraction to human-modified environments by 

these species. For example, crab-eating fox and armadillo are opportunistic feeders known to 

use non-forested areas throughout their geographic range (Dotta and Verdade 2007; Beisiegel 

et al. 2013), and likely make ready use of anthropogenic food sources in human-dominated 

landscapes. Prey species have also been shown to use human activities or infrastructure as 

shields against predators (Terborgh 2000; Berger 2007), a pattern that has been observed with 

ungulates (Hebblewhite et al. 2005). In the current study, deer exhibited the highest amount 

of activity overlap with humans (∆=0.6) and dogs (∆=0.84) and did not shift their activity 

pattern between areas having higher or lower probability of use by dogs or humans. The main 

natural predator of deer in this region is cougar (Puma concolor), a species whose space use is 

inversely related to developed areas (Beier et al., 2010; Moss et al., 2016; Wang et al., 2015). 
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Whereas the other potential prey for cougars in this study, armadillo and paca, can find refuge 

in burrows (Beck-King and von Helversen 1999; McDonough et al. 2000; Ebensperger and 

Blumstein 2006; Figueroa-de León et al. 2016), deer may find greater refuge in areas of higher 

human activity—although that exposes them to likely higher rates of encounters with 

domestic dogs. As dogs in this region commonly travel in packs (my records showed groups 

between 2 to 6 dogs), it is very likely free-ranging dogs will chase deer. In fact, I have observed 

dogs chasing different animals in the field and recorded packs chasing deer at least twice in 

camera traps. This might be the case for other human-dominated landscapes as well. 

With the growing human footprint across the world (Sanderson et al. 2002), animals actively 

trying to avoid humans or dogs are running out of space (Benítez-López et al. 2010). Lacking 

physical refuges left to move to, animals may adaptively create temporal refuges (Benítez-

López 2018)—shifting from daytime activities to twilight or night hours (Benítez-López 2018; 

Gaynor et al. 2018). Except for deer, the mammals in this study exhibited largely crepuscular or 

nocturnal activity which is consistent to the known biology of the species (Reis et al. 2010). 

Therefore, the mammals’ pattern of activity corresponded to a relatively low overlap with 

humans. For my study species, the observed activity patterns were similar to those reported 

elsewhere, including more pristine landscapes or larger forest remnants (Di Bitetti et al. 2006; 

Norris et al. 2010; Michalski and Norris 2011; Oliveira-Santos et al. 2013; Ferreguetti et al. 

2015; Cruz et al. 2018). Combined with this observation, the fact that I failed to detect 

differences in activity patterns between areas with relatively higher versus lower probability of 

use by dogs and/ or humans (but see paca and dogs) could be do to the large probability of use 

of the landscape shown by dogs and humans. This fact decreases the amount of areas with no 

use by those species across the landscape to test the hypothesis of increase of nocturnal 

activity by native mammals. Anyway, the fact that all native mammals included in this study 

(except for deer) have a natural nocturnal activity pattern, could indicate this general behavior 
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could enable these species to coexist with dogs and humans. Like humans, dogs exhibited a 

diurnal pattern of activity (George and Crooks, 2006; Moreira-Arce et al., 2015), but with a less 

pronounced mid-day peak in my study that resulted in moderate-high levels of overlap in 

activity with native mammals.   

Domestic dogs are considered a threat to the persistence of many species worldwide, and 

have contributed to the extinction of at least 11 vertebrates (Doherty et al. 2017). Consider 

too that in the highly fragmented tropical forests, a largely unregulated harvest of wild species 

may act synergistically with threats posed by dogs to further imperil biodiversity (Schipper et 

al. 2008). This study documented that free-ranging dogs are widespread throughout the 

studied landscape, including strictly protected areas which are created as a tool for 

biodiversity conservation. Also, the indication of which species might fare better or worse 

given the threat posed by dogs suggests that management intervention might be needed to 

effectively create dog-free refuges for wildlife. For example, the oncilla L. guttulus, a 

threatened species, was showed to be negatively affected by the presence of dogs. Given the 

widespread occurrence of dogs, and the independent activity of dogs separate from humans, 

management of biodiversity in this human-dominated landscape should focus not only on 

reinforcement against illegal hunting, but also should engage creatively in the challenge of 

establishing dog-free areas. 

 

 

 

 



29 

 

Table 1. Number of detections (#) and naïve occupancy (N.O.) for native mammals, domestic 

dogs, and humans within an Atlantic Forest landscape, Brazil, along with the results of single-

species, dynamic occupancy models including the probability of use (�̂�), colonization (𝛾), 

extinction (𝜀̂), and detection (�̂�); One occasion = seven days, SE shown in parentheses. 

 

 

 

 

 

 

Species # N.O. �̂� 𝛾 𝜀̂ 

�̂� 

On trail Off trail 

Deer 117 0.26 0.26 (0.05) 0.07 (0.10) 0.55 (1.04) 0.25 (0.03) 0.36 (0.04) 

Armadillo 158 0.37 0.32 (0.06) 0.13 (0.08) 0.41 (0.19) 0.29 (0.03) 0.23 (0.02) 

Paca 136 0.25 0.31 (0.25) 0.07 (0.05) 0.17 (0.19) 0.35 (0.03) 0.20 (0.03) 

Crab-eating fox 131 0.34 0.40 (0.07) 0.04 (0.06) 0.18 (1.65) 0.27 (0.02) 0.09 (0.02) 

Ocelot 92 0.37 0.44 (0.09) 0.05 (0.09) 0.04 (0.15) 0.15 (0.02) 0.10 (0.02) 

Oncilla 93 0.38 0.55 (0.14) 0.03 (0.10) 0.39 (0.18) 0.13 (0.02) 0.08 (0.01) 

Domestic dog 209 0.54 0.92 (0.31) 0.83 (1.12) 0.17(1.58) 0.27 (0.02) 0.07 (0.02) 

Humans 214 0.36 0.61 (0.07) - - 0.40 (0.02) 0.01 (0.01) 

Domestic dog 

and humans 

59 0.19 0.36 (0.07) - - 0.16 (0.02) 0.02 (0.01) 
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Table 2. Hypotheses and a priori predictions about the influence of dogs or humans, or features 

related to their occurrence, on temporal activity overlap with or space use patterns of native 

mammal species (armadillo, deer, paca, crab-eating fox, ocelot, oncilla) within the Atlantic Forest of 

Brazil.  For the probability of use (𝜓), colonization (𝛾), and extinction (ε), species interaction factor 

(SIF) on either 𝜓 or detection (p), and the percent temporal activity overlap, hypothesized effects 

of covariates include a positive association (+), negative association (ꟷ), or indifference (“none”). 

 

   Statistical Expectation 

Outcome Covariate Expectation 𝝍 𝜸 𝜺 

SIF ( 

𝝍) 

SIF 

(p) 

Activity 

overlap 

None 
Increasing dog or 

human occupancy  

Animals may not be insensitive to 

competition or predation by dogs 

or humans or may benefit from 

their presence. 

None  None  None  
1 (or 

>1) 

1 

(or 

>1) 

None 

Move  

(spatial 

avoidance) 

Increasing 

percentage of 

area forested 

Dogs occur predominantly in 

disturbed areas, such as small 

forest fragments or edges.   

+ + ꟷ <1 <1 None 

Increasing road 

density  

Human and dog activity is 

concentrated in areas near roads. 
ꟷ ꟷ + <1 <1 None 

Increasing housing 

density 

Human and dog activity is 

concentrated near houses. 
ꟷ ꟷ + <1 <1 None 

 

Adapt 

(temporal 

avoidance) 

 

Dog or human 

presence 

Vulnerable animals might adjust 

their activity to avoid 

competition or predation 

None  None None 1 1 ꟷ 
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Table 3. Dynamic, two-species occupancy model results indicating the probability of site use 

(�̂�) and detection probability when the dominant species is present (�̂�) or absent (�̂�) estimated 

for six native mammals with respect to either domestic dogs or humans in an Atlantic Forest 

landscape, Brazil. Target species, i.e., native mammals, are indicated by B while the presence 

or absence of dogs and humans, the dominant species, are indicated by A and a, respectively. 

Target species (B) 𝜓BA 𝜓Ba rBA rBa pB 

Dogs as dominant species (A = present, a = absent) 

Armadillo 0.39 (0.06) 0.37 (0.07) 0.11 (0.04) 0.23 (0.03) 0.11 (0.04) 

Paca 0.39 (0.05) 0.06 (0.04) 0.26 (0.04) 0.18 (0.03) 0.15 (0.03) 

Deer 0.44 (0.05) 0.15 (0.07) 0.15 (0.03) 0.23 (0.03) 0.10 (0.03) 

Crab-eating fox 0.49 (0.07) 0.45 (0.12) 0.07 (0.02) 0.09 (0.02) 0.03 (0.01) 

Ocelot 0.59 (0.06) 0.87 (-) 0.06 (0.02) 0.06 (0.01) 0.02 (0.01) 

Oncilla 0.54 (0.06) 0.66 (0.17) 0.11 (0.02) 0.05 (0.01) 0.05 (0.01) 

Humans as dominant species (A = present, a = absent) 

Armadillo 0.35 (0.05) 0.35 (0.06) 0.11 (0.04) 0.23 (0.03) 0.11 (0.03) 

Paca 0.30 (0.04) 0.29 (0.06) 0.08 (0.03) 0.25 (0.06) 0.06 (0.02) 

Deer 0.33 (0.05) 0.25 (0.07) 0.24 (0.05) 0.20 (0.05) 0.26 (0.04) 

Crab-eating fox 0.42 (0.07) 0.40 (0.08) 0.03 (0.01) 0.05 (0.01) 0.04 (0.01) 

Ocelot 0.45 (0.05) 0.77 (-) 0.13 (0.04) 0.16 (0.04) 0.04 (0.01) 

Oncilla 0.43 (0.07) 0.41 (0.10) 0.03 (0.01) 0.05 (0.01) 0.05 (0.01) 

Dog 0.55 (0.05) 0.55 (0.06) 0.10 (0.03) 0.04 (0.01) 0.06 (0.01) 
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Figure 1. Area of study and sampling sites (camera traps) located at an Atlantic Forest human-

modified landscape, São Paulo and Minas Gerais states, Southeastern Brazil. 
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Figure 2. Number of top models, across six target mammal species, in which a given scale was 

indicated as best based on Akaike’s Information Criterion (models with AIC<2) for the effects 

of the proportion of forest (A, B), housing density (C, D), or road density (E, F) on the 

probability of site use (𝜓) parameter for the target species when either dogs (A, C, E) or 

humans (B, D, F) were indicated as the dominant species. Tested scales included an area 

equivalent to the minimum home range size for each native mammal species (estimated from 

published literature) along with half and double that estimated range size. 
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Figure 3. Sum of Akaike weights (wi) indicating the level of support for the effect of each 

covariate—forest proportion, housing density, or road density—on the probability of use (𝜓) 

by six native mammals within an Atlantic Forest landscape when either domestic dogs (Canis 

familiaris; top left) or humans (Homo sapiens; top right) were identified as the dominant 

competitor in dynamic, two-species models. Null models (those lacking site covariates) were 

not plotted as they rarely ranked among the top models and contributed little (<0.2) to the 

sum of Akaike weights.  Bottom panels indicate the estimated species interaction factors, 

which illustrates the relative, overall effect of the dominant species on the site use patterns of 

the target species. 
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Figure 4. Species interaction factor (SIF) from dynamic co-occurrence models for native 

mammals and domestic dogs (A and D), humans (B and E), or both domestic dogs and humans 

detected at the same occasion (C and F). The horizontal line at 1.0 indicates independence 

between the target and dominant species, whereas SIF<1 indicates spatial avoidance and SIF>1 

represents aggregation. Top panels indicate the SIF for the probability of site use while bottom 

panelse indicated SIF for detection probability. 

 

 

 

 

 



36 

 

 

Figure 5. Daily activity patterns of native mammals and dogs within an Atlantic Forest 

landscape, Brazil.  Grey shading indicates activity overlap between each target mammal 

species and dogs, with the overlap coefficient (∆) ranging from 0 (no overlap) to 1 (identical 

activity patterns). 
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Figure 6. Daily activity patterns of native mammals and humans within an Atlantic Forest 

landscape, Brazil.  Grey shading indicates activity overlap between each target mammal 

species and humans, with the overlap coefficient (∆) ranging from 0 (no overlap) to 1 (identical 

activity patterns). 
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Appendix 1. Spatial distribution of camera trap models regarding trigger speed across a 

gradient of forest amount in the area of study. 
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Appendix 2. Model selection for occupancy, colonization, and extinction probability covariates 

(percentage forest cover, housing, and road density) at three scales: home range, half, and 

double the home range size for native mammals and domestic dogs or humans. The covariates 

included for p, referred as p(global), were trail, a term to indicate species effect on detection 

(SP), a detection-level interaction where the occurrence of one species changes the detection 

probability of the other species (INTo), a second detection-level interaction where the 

detection of one species changes the detection probability of the other species in the same 

survey (INTd), and an interaction effect of occupancy and detection on detection (SP:INTd). 

Armadillo - dog 

Proportion of forest (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.53 10 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.92 0.34 10 

𝜓 (PFor250) 𝛾 (.) 𝜀 (.) p (global) 2.71 0.14 10 

Armadillo - dog 

Proportion of forest (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.00 0.59 10 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 1.02 0.35 10 

𝜓 (.) 𝛾 (PFor250) 𝜀 (.) p (global) 4.79 0.05 10 

Armadillo - dog 

Proportion of forest (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 0.00 0.46 10 
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𝜓 (.) 𝛾 (.) 𝜀 (PFor250) p (global) 0.11 0.43 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 2.83 0.11 10 

Armadillo - dog 

Housing density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.75 10 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 2.44 0.22 10 

𝜓 (HD250) 𝛾 (.) 𝜀 (.) p (global) 6.50 0.03 10 

Armadillo - dog 

Housing density (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 0.00 0.75 10 

𝜓 (.) 𝛾 (HD250) 𝜀 (.) p (global) 6.33 0.04 10 

𝜓 (.) 𝛾 (HD500) 𝜀 (.) p (global) 6.47 0.04 10 

Armadillo - dog 

Housing density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.00 0.72 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 2.69 0.19 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 3.98 0.10 10 

Armadillo - dog 

Road density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.49 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 0.77 0.33 10 
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𝜓 (RD250) 𝛾 (.) 𝜀 (.) p (global) 6.50 0.18 10 

Armadillo - dog 

Road density (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 0.00 0.40 10 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.34 0.34 10 

𝜓 (.) 𝛾 (RD250) 𝜀 (.) p (global) 0.87 0.26 10 

Armadillo - dog 

Road density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 0.00 0.54 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 1.69 0.23 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 1.72 0.23 10 

Paca - dog 

Proportion of forest (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (PFor250) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.34 10 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.34 10 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.10 0.32 10 

Paca – dog 

Proportion of forest (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.00 0.55 10 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 1.10 0.32 10 

𝜓 (.) 𝛾 (PFor250) 𝜀 (.) p (global) 2.82 0.13 10 
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Paca – dog 

Proportion of forest (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 0.00 0.46 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 0.06 0.45 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor250) p (global) 3.21 0.09 10 

Paca – dog 

Housing density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (HD250) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.53 10 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 0.36 0.44 10 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 6.36 0.02 10 

Paca – dog 

Housing density (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (HD250) 𝜀 (.) p (global) 0.00 0.86 10 

𝜓 (.) 𝛾 (HD500) 𝜀 (.) p (global) 3.84 0.13 10 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 8.06 0.02 10 

Paca – dog 

Housing density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.00 0.63 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 2.25 0.20 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 2.65 0.17 10 

Paca - dog 
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Road density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.57 10 

𝜓 (RD250) 𝛾 (.) 𝜀 (.) p (global) 1.73 0.24 10 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 2.24 0.19 10 

Paca – dog 

Road density (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.00 0.55 10 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 1.03 0.33 10 

𝜓 (.) 𝛾 (RD250) 𝜀 (.) p (global) 3.02 0.12 10 

Paca – dog 

Road density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.00 0.54 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 1.54 0.25 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 1.81 0.22 10 

Deer - dog    

Proportion of forest (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.38 10 

𝜓 (PFor250) 𝛾 (.) 𝜀 (.) p (global) 0.37 0.32 10 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 0.50 0.30 10 

Deer– dog    

Proportion of forest (Gamma)    
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Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 0.00 0.34 10 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.03 0.33 10 

𝜓 (.) 𝛾 (PFor250) 𝜀 (.) p (global) 0.09 0.32 10 

Deer – dog    

Proportion of forest (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 0.00 0.38 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor250) p (global) 0.20 0.34 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 0.62 0.28 10 

Deer – dog    

Housing density (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.94 10 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 5.77 0.05 10 

𝜓 (HD250) 𝛾 (.) 𝜀 (.) p (global) 10.51 0.01 10 

Deer – dog    

Housing density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 0.00 0.61 10 

𝜓 (.) 𝛾 (HD500) 𝜀 (.) p (global) 2.29 0.20 10 

𝜓 (.) 𝛾 (HD250) 𝜀 (.) p (global) 2.38 0.19 10 

Deer – dog    

Housing density (Epsilon)    

Models Δ AIC AIC weight NPar 
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𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.00 0.40 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 0.34 0.33 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.80 0.27 10 

Deer - dog    

Road density (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.62 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 1.32 0.32 10 

𝜓 (RD250) 𝛾 (.) 𝜀 (.) p (global) 4.94 0.05 10 

Deer – dog    

Road density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.00 0.36 10 

𝜓 (.) 𝛾 (RD250) 𝜀 (.) p (global) 0.17 0.33 10 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 0.32 0.31 10 

Deer – dog    

Road density (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (RD500) p (global) 0.00 0.85 10 

𝜓 (.) 𝛾 (.) 𝜀 (RD250) p (global) 4.75 0.08 10 

𝜓 (.) 𝛾 (.) 𝜀 (RD1000) p (global) 4.88 0.07 10 

Crab-eating fox - dog    

Proportion of forest (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (PFor2000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.83 10 
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𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 4.00 0.11 10 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 5.24 0.06 10 

Crab-eating fox– dog    

Proportion of forest (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 0.00 0.37 10 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.07 0.36 10 

𝜓 (.) 𝛾 (PFor2000) 𝜀 (.) p (global) 0.66 0.27 10 

Crab-eating fox – dog    

Proportion of forest (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor2000) p (global) 0.00 0.57 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 1.50 0.27 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 2.51 0.16 10 

Crab-eating fox – dog    

Housing density (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.70 10 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 2.17 0.23 10 

𝜓 (HD2000) 𝛾 (.) 𝜀 (.) p (global) 4.64 0.07 10 

Crab-eating fox – dog    

Housing density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 0.00 0.65 10 

𝜓 (.) 𝛾 (HD500) 𝜀 (.) p (global) 1.63 0.29 10 
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𝜓 (.) 𝛾 (HD2000) 𝜀 (.) p (global) 4.70 0.06 10 

Crab-eating fox – dog    

Housing density (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.00 0.55 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 0.74 0.38 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 3.96 0.08 10 

Crab-eating fox - dog    

Road density (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (RD2000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.91 10 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 5.87 0.05 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 6.17 0.04 10 

Crab-eating fox – dog    

Road density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.00 0.37 10 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 0.02 0.33 10 

𝜓 (.) 𝛾 (RD2000) 𝜀 (.) p (global) 0.05 0.30 10 

Crab-eating fox – dog    

Road density (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 0.00 0.37 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.22 0.33 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.43 0.30 10 
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Oncilla - dog    

Proportion of forest (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (PFor2000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.48 10 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 1.11 0.27 10 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 1.33 0.25 10 

Oncilla– dog    

Proportion of forest (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor2000) 𝜀 (.) p (global) 0.00 0.40 10 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.33 0.34 10 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 0.91 0.26 10 

Oncilla – dog    

Proportion of forest (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor2000) p (global) 0.00 0.54 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 1.49 0.26 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 1.99 0.20 10 

Oncilla – dog    

Housing density (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.75 10 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 2.76 0.19 10 

𝜓 (HD2000) 𝛾 (.) 𝜀 (.) p (global) 4.97 0.06 10 

Oncilla – dog    
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Housing density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 0.00 0.63 10 

𝜓 (.) 𝛾 (HD500) 𝜀 (.) p (global) 1.68 0.27 10 

𝜓 (.) 𝛾 (HD2000) 𝜀 (.) p (global) 3.59 0.10 10 

Oncilla – dog    

Housing density (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 0.00 0.46 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.07 0.44 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 3.06 0.10 10 

Oncilla - dog    

Road density (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (RD2000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.62 10 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 1.82 0.25 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 3.10 0.13 10 

Oncilla – dog    

Road density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD2000) 𝜀 (.) p (global) 0.00 0.39 10 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 0.34 0.33 10 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.61 0.29 10 

Oncilla – dog    

Road density (Epsilon)    
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Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.00 0.51 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 1.19 0.28 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 1.85 0.20 10 

Ocelot - dog    

Proportion of forest (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.37 10 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 0.24 0.33 10 

𝜓 (PFor2000) 𝛾 (.) 𝜀 (.) p (global) 0.36 0.31 10 

Ocelot– dog    

Proportion of forest (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor2000) 𝜀 (.) p (global) 0.00 0.40 10 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.33 0.34 10 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 0.91 0.26 10 

Ocelot – dog    

Proportion of forest (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 0.00 0.37 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 0.26 0.33 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor2000) p (global) 0.39 0.31 10 

Ocelot – dog    

Housing density (Psi)    

Models Δ AIC AIC weight NPar 
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𝜓 (HD2000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.57 10 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 0.90 0.36 10 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 4.04 0.08 10 

Ocelot – dog    

Housing density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 0.00 0.68 10 

𝜓 (.) 𝛾 (HD500) 𝜀 (.) p (global) 2.33 0.21 10 

𝜓 (.) 𝛾 (HD2000) 𝜀 (.) p (global) 3.74 0.11 10 

Ocelot – dog    

Housing density (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.00 0.48 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 0.77 0.33 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 1.90 0.19 10 

Ocelot – dog    

Road density (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.41 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 0.65 0.30 10 

𝜓 (RD250) 𝛾 (.) 𝜀 (.) p (global) 0.74 0.29 10 

Ocelot – dog    

Road density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.00 0.69 10 
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𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 3.01 0.15 10 

𝜓 (.) 𝛾 (RD2000) 𝜀 (.) p (global) 3.01 0.15 10 

Ocelot – dog    

Road density (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 0.00 0.43 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.72 0.30 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.94 0.27 10 

Armadillo - human    

Proportion of forest (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.64 10 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 1.34 0.33 10 

𝜓 (PFor250) 𝛾 (.) 𝜀 (.) p (global) 6.11 0.03 10 

Armadillo– human    

Proportion of forest (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.00 0.52 10 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 0.89 0.33 10 

𝜓 (.) 𝛾 (PFor250) 𝜀 (.) p (global) 2.61 0.14 10 

Armadillo – human    

Proportion of forest (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 0.00 0.54 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor250) p (global) 1.09 0.31 10 
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𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 2.50 0.15 10 

Armadillo – human    

Housing density (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.64 10 

𝜓 (HD250) 𝛾 (.) 𝜀 (.) p (global) 1.49 0.31 10 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 5.06 0.05 10 

Armadillo – human    

Housing density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (HD250) 𝜀 (.) p (global) 0.00 0.41 10 

𝜓 (.) 𝛾 (HD500) 𝜀 (.) p (global) 0.12 0.38 10 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 1.34 0.21 10 

Armadillo – human    

Housing density (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 0.00 0.80 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 3.26 0.16 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 5.73 0.04 10 

Armadillo - human    

Road density (Psi)    

Models Δ AIC AIC weight NPar 

𝜓 (RD250) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.54 10 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 1.46 0.26 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 1.90 0.21 10 
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Armadillo – human    

Road density (Gamma)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 0.00 0.51 10 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 1.29 0.26 10 

𝜓 (.) 𝛾 (RD250) 𝜀 (.) p (global) 1.59 0.23 10 

Armadillo – human    

Road density (Epsilon)    

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.00 0.48 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.63 0.35 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 2.15 0.17 10 

Paca - human 

Proportion of forest (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.39 10 

𝜓 (PFor250) 𝛾 (.) 𝜀 (.) p (global) 0.28 0.34 10 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.71 0.27 10 

Paca– human 

Proportion of forest (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.00 0.41 10 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 0.00 0.36 10 

𝜓 (.) 𝛾 (PFor250) 𝜀 (.) p (global) 1.17 0.23 10 

Paca – human 
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Proportion of forest (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 0.00 0.38 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 0.11 0.36 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor250) p (global) 0.73 0.26 10 

Paca – human 

Housing density (Psi) 

Models Δ AIC AIC weight NPar 

𝝍 (HD250) 𝜸 (.) 𝜺 (.) p (global) 0.00 0.80 10 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 2.84 0.19 10 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 13.05 0.00 10 

Paca – human 

Housing density (Gamma) 

Models Δ AIC AIC weight NPar 

𝝍 (.) 𝜸 (HD250) 𝜺 (.) p (global) 0.00 0.69 10 

𝜓 (.) 𝛾 (HD500) 𝜀 (.) p (global) 2.14 0.24 10 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 4.45 0.07 10 

Paca – human 

Housing density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.00 0.36 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 0.02 0.36 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.58 0.27 10 

Paca - human 

Road density (Psi) 
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Models Δ AIC AIC weight NPar 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.35 10 

𝜓 (RD250) 𝛾 (.) 𝜀 (.) p (global) 0.05 0.34 10 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 0.24 0.31 10 

Paca – human 

Road density (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 0.00 0.43 10 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.27 0.38 10 

𝜓 (.) 𝛾 (RD250) 𝜀 (.) p (global) 1.69 0.19 10 

Paca – human 

Road density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.00 0.36 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 0.06 0.35 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.49 0.28 10 

Deer - human 

Proportion of forest (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (PFor250) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.34 10 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.04 0.33 10 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 0.08 0.33 10 

Deer– human 

Proportion of forest (Gamma) 

Models Δ AIC AIC weight NPar 
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𝜓 (.) 𝛾 (PFor250) 𝜀 (.) p (global) 0.00 0.37 10 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 0.31 0.32 10 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.41 0.31 10 

Deer – human 

Proportion of forest (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 0.00 0.34 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor250) p (global) 0.01 0.33 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 0.02 0.33 10 

Deer – human 

Housing density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.42 10 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 0.57 0.32 10 

𝜓 (HD250) 𝛾 (.) 𝜀 (.) p (global) 1.01 0.26 10 

Deer – human 

Housing density (Gamma) 

Models Δ AIC AIC weight NPar 

𝝍 (.) 𝜸 (HD500) 𝜺 (.) p (global) 0.00 0.70 10 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 3.08 0.15 10 

𝜓 (.) 𝛾 (HD250) 𝜀 (.) p (global) 3.11 0.15 10 

Deer – human 

Housing density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.00 0.37 10 
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𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.33 0.32 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD250) p (global) 0.35 0.31 10 

Deer - human 

Road density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.42 10 

𝜓 (RD250) 𝛾 (.) 𝜀 (.) p (global) 0.23 0.38 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 1.53 0.20 10 

Deer – human 

Road density (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.00 0.39 10 

𝜓 (.) 𝛾 (RD250) 𝜀 (.) p (global) 0.36 0.32 10 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 0.55 0.29 10 

Deer – human 

Road density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (RD500) p (global) 0.00 0.43 10 

𝜓 (.) 𝛾 (.) 𝜀 (RD1000) p (global) 0.80 0.29 10 

𝜓 (.) 𝛾 (.) 𝜀 (RD250) p (global) 0.82 0.28 10 

Crab-eating fox - human 

Proportion of forest (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.44 10 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 0.37 0.36 10 
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𝜓 (PFor2000) 𝛾 (.) 𝜀 (.) p (global) 1.63 0.19 10 

Crab-eating fox– human 

Proportion of forest (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 0.00 0.51 10 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.60 0.37 10 

𝜓 (.) 𝛾 (PFor2000) 𝜀 (.) p (global) 2.92 0.12 10 

Crab-eating fox – human 

Proportion of forest (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 0.00 0.42 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor2000) p (global) 0.44 0.34 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 1.07 0.24 10 

Crab-eating fox – human 

Housing density (Psi) 

Models Δ AIC AIC weight NPar 

𝝍 (HD500) 𝜸 (.) 𝜺 (.) p (global) 0.00 0.81 10 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 4.24 0.10 10 

𝜓 (HD2000) 𝛾 (.) 𝜀 (.) p (global) 4.28 0.09 10 

Crab-eating fox – human 

Housing density (Gamma) 

Models Δ AIC AIC weight NPar 

𝝍 (.) 𝜸 (HD500) 𝜺 (.) p (global) 0.00 0.73 10 

𝜓 (.) 𝛾 (HD2000) 𝜀 (.) p (global) 3.39 0.13 10 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 3.41 0.13 10 
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Crab-eating fox – human 

Housing density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.00 0.43 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.31 0.36 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 1.44 0.21 10 

Crab-eating fox - human 

Road density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (RD2000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.49 10 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 1.25 0.26 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 1.39 0.25 10 

Crab-eating fox – human 

Road density (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.00 0.34 10 

𝜓 (.) 𝛾 (RD2000) 𝜀 (.) p (global) 0.02 0.33 10 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 0.04 0.33 10 

Crab-eating fox – human 

Road density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (RD1000) p (global) 0.00 0.38 10 

𝜓 (.) 𝛾 (.) 𝜀 (RD500) p (global) 0.17 0.35 10 

𝜓 (.) 𝛾 (.) 𝜀 (RD2000) p (global) 0.68 0.27 10 

Oncilla - human 
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Proportion of forest (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.35 10 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.04 0.34 10 

𝜓 (PFor2000) 𝛾 (.) 𝜀 (.) p (global) 0.21 0.31 10 

Oncilla– human 

Proportion of forest (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor2000) 𝜀 (.) p (global) 0.00 0.45 10 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 0.97 0.28 10 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 0.98 0.27 10 

Oncilla – human 

Proportion of forest (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 0.00 0.37 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 0.16 0.34 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor2000) p (global) 0.55 0.28 10 

Oncilla – human 

Housing density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (HD2000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.36 10 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 0.15 0.33 10 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 0.23 0.32 10 

Oncilla – human 

Housing density (Gamma) 
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Models Δ AIC AIC weight NPar 

𝝍 (.) 𝜸 (HD500) 𝜺 (.) p (global) 0.00 0.66 10 

𝜓 (.) 𝛾 (HD2000) 𝜀 (.) p (global) 2.72 0.17 10 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 2.74 0.17 10 

Oncilla – human 

Housing density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.00 0.54 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.82 0.36 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 3.23 0.11 10 

Oncilla - human 

Road density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (RD2000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.44 10 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 0.72 0.30 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 1.05 0.26 10 

Oncilla – human 

Road density (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD2000) 𝜀 (.) p (global) 0.00 0.44 10 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.78 0.30 10 

𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 1.03 0.26 10 

Oncilla – human 

Road density (Epsilon) 

Models Δ AIC AIC weight NPar 
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𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.00 0.41 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 0.45 0.33 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.96 0.26 10 

Ocelot - human 

Proportion of forest (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (PFor1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.41 10 

𝜓 (PFor2000) 𝛾 (.) 𝜀 (.) p (global) 0.23 0.36 10 

𝜓 (PFor500) 𝛾 (.) 𝜀 (.) p (global) 1.14 0.23 10 

Ocelot– human 

Proportion of forest (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (PFor2000) 𝜀 (.) p (global) 0.00 0.49 10 

𝜓 (.) 𝛾 (PFor500) 𝜀 (.) p (global) 1.00 0.30 10 

𝜓 (.) 𝛾 (PFor1000) 𝜀 (.) p (global) 1.69 0.21 10 

Ocelot – human 

Proportion of forest (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (PFor500) p (global) 0.00 0.38 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor1000) p (global) 0.25 0.34 10 

𝜓 (.) 𝛾 (.) 𝜀 (PFor2000) p (global) 0.62 0.28 10 

Ocelot – human 

Housing density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (HD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.54 10 
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𝜓 (HD2000) 𝛾 (.) 𝜀 (.) p (global) 1.28 0.28 10 

𝜓 (HD500) 𝛾 (.) 𝜀 (.) p (global) 2.21 0.18 10 

Ocelot – human 

Housing density (Gamma) 

Models Δ AIC AIC weight NPar 

𝝍 (.) 𝜸 (HD500) 𝜺 (.) p (global) 0.00 0.99 10 

𝜓 (.) 𝛾 (HD1000) 𝜀 (.) p (global) 11.59 0.00 10 

𝜓 (.) 𝛾 (HD2000) 𝜀 (.) p (global) 11.63 0.00 10 

Ocelot – human 

Housing density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 0.00 0.37 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.01 0.37 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 0.66 0.26 10 

Ocelot - human 

Road density (Psi) 

Models Δ AIC AIC weight NPar 

𝜓 (RD1000) 𝛾 (.) 𝜀 (.) p (global) 0.00 0.36 10 

𝜓 (RD500) 𝛾 (.) 𝜀 (.) p (global) 0.21 0.32 10 

𝜓 (RD2000) 𝛾 (.) 𝜀 (.) p (global) 0.22 0.32 10 

Ocelot – human 

Road density (Gamma) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (RD500) 𝜀 (.) p (global) 0.00 0.42 10 

𝜓 (.) 𝛾 (RD2000) 𝜀 (.) p (global) 0.75 0.29 10 
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𝜓 (.) 𝛾 (RD1000) 𝜀 (.) p (global) 0.79 0.28 10 

Ocelot – human 

Road density (Epsilon) 

Models Δ AIC AIC weight NPar 

𝜓 (.) 𝛾 (.) 𝜀 (HD500) p (global) 0.00 0.45 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD2000) p (global) 0.92 0.28 10 

𝜓 (.) 𝛾 (.) 𝜀 (HD1000) p (global) 1.09 0.26 10 

Covariates: PFor: Proportion of forest within buffers around camera traps; HD: housing density 

within buffers around camera traps; RD: road density within buffers around camera traps. The 

buffer radius varied from 250 m to 2000 m depending on the species pair. 𝜓 = probability that 

the area is initially occupied by the species; 𝛾 = colonization probability or probability that the 

species occupy the area between time t and t+1 when it did not in time t; 𝜀 = extinction 

probability or probability that the species do not occupy the area between time t and t+1 when 

it did in time t; p(global) = trail + SP + INTo + INTd + SP:INT. SP = species effect on detection 

(pB,rBa or rBA ≠ pA,rA); INTo =  interaction effect of occupancy on detection (pBa or pBA ≠ rBa 

or rBA); INTd = interaction effect of detection on detection (rBa or rBA ≠ rA); SP:INTd =  

interaction effect of occupancy and detection on detection (rBa ≠ rBA). 
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Appendix 3. Top models and untransformed coefficient of covariates in dynamic co-occurrence 

models between domestic dogs (Canis familiaris) or humans and native mammals (armadillo, 

paca, deer, crab-eating fox, oncilla, and ocelot). Only models with delta AIC < 2 were included. 

Armadillo - dog 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓 A Intercept 𝜓 Ba Forest proportion HD RD 

1 0.00 0.03 14 0.54 (0.32)  -0.69 (0.31) 1.31 (0.98)  

2 0.26 0.02 13 0.47 (0.33)  -0.70 (0.31) 1.34 (0.98)  

3 0.56 0.02 13 0.62 (0.32)  -0.65 (0.30) 1.33 (0.98)  

4 1.06 0.02 15 0.53 (0.32)  -0.64 (0.30) 1.38 (0.99)  

5 1.18 0.01 14 0.52 (0.32) -0.68 (0.66) -0.64 (0.28) 1.27 (0.94)  

6 1.24 0.01 14 0.47 (0.32)  -0.68 (0.30) 1.36 (0.98)  

7 1.41 0.01 12 0.58 (0.32)  -0.67 (0.30) 1.33 (0.97)  

8 1.42 0.01 14 0.61 (0.32)  -0.59 (0.29) 1.41 (0.99)  

9 1.44 0.01 15 0.55 (0.33)  -0.68 (0.31) 1.31 (1.00)  

10 1.50 0.01 15 0.54 (0.32)  -0.75 (0.31) 1.23 (0.96)  

11 1.51 0.01 15 0.52 (0.32)  -0.69(0.31) 1.31 (0.98)  

12 1.63 0.01 15 0.55 (0.32) -0.45 (0.73) -0.65 (0.29) 1.28 (0.95)  

13 1.74 0.01 14 0.46 (0.32)  -0.71 (0.31) 1.34 (0.98)  

14 1.87 0.01 14 0.63 (0.33)  -0.63 (0.32) 1.33 (1.01)  

15 1.92 0.01 15 0.54 (0.32)  -0.69 (0.30) 1.36 (0.97)  

16 1.94 0.01 14 0.47 (0.33)  -0.68 (0.31) 1.36 (1.00)  

17 1.97 0.01 14 0.63 (0.32)  -0.72 (0.31) 1.23 (0.95)  
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18 1.98 0.01 15 0.52 (0.34)  -0.69 (0.31) 1.30 (0.98) -0.06 (0.38) 

Paca - dog 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓 A Intercept 𝜓 Ba Forest proportion HD RD 

1 0.00 0.04 16 0.01 (0.21) -2.35 (0.74)  1.34 (0.54)  

2 0.24 0.03 15 -0.01 (0.21) -2.39 (0.75)  1.30 (0.51)  

3 0.31 0.03 15 0.01 (0.21) -2.39 (0.82)  1.34 (0.54)  

4 0.38 0.03 14 0.02 (0.22) -2.38 (0.79)  1.42 (0.59)  

5 0.55 0.03 14 -0.01 (0.21) -2.42 (0.82)  1.30 (0.51)  

6 0.61 0.03 13 0.01 (0.22) -2.40 (0.80)  1.38 (0.56)  

7 0.66 0.03 15 0.02 (0.22) -2.36 (0.74)  1.43 (0.59)  

8 0.77 0.02 16 -0.02 (0.22) -2.26 (0.75)  1.39 (0.57)  

9 0.90 0.02 14 -0.00 (0.22) -2.38 (0.75)  1.38 (0.56)  

10 1.08 0.02 14 0.00 (0.23) -2.34 (0.80)  1.46 (0.59)  

11 1.08 0.02 15 0.02 (0.23) -2.34 (0.77)  1.45 (0.63)  

12 1.08 0.02 17 0.00 (0.22) -2.23 (0.74)  1.45 (0.59)  

13 1.19 0.02 15 -0.00 (0.23) -2.30 (0.75)  1.47 (0.59)  

14 1.24 0.02 15 -0.01 (0.22) -2.31 (0.82)  1.38 (0.56)  

15 1.25 0.02 17 0.00 (0.21) -2.34 (0.74)  1.35 (0.54)  

16 1.25 0.02 16 0.01 (0.21) -2.34 (0.80)  1.34 (0.54)  

17 1.38 0.02 14 -0.00 (0.22) -2.37 (0.77)  1.39 (0.56)  

18 1.44 0.02 15 0.02 (0.23) -2.31 (0.79)  1.50 (0.62)  

19 1.51 0.02 16 0.10 (0.24) -2.38 (0.76)  1.65 (0.67)  

20 1.52 0.02 16 -0.02 (0.21) -2.37 (0.75)  1.30 (0.51)  
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21 1.54 0.02 16 0.01 (0.22) -2.27 (0.81)  1.42 (0.60)  

22 1.54 0.02 15 -0.01 (0.21) -2.38 (0.80)  1.30 (0.51)  

23 1.56 0.02 16 0.02 (0.23) -2.27 (0.74)  1.52 (0.61)  

24 1.62 0.02 16 0.02 (0.22) -2.33 (0.73)  1.45 (0.60)  

25 1.62 0.02 16 -0.00 (0.21) -2.39 (0.75)  1.32 (0.52)  

26 1.65 0.02 17 0.02 (0.22) -2.36 (0.75)  1.37 (0.56)  

27 1.75 0.02 14 0.02 (0.22) -2.41 (0.79)  1.41 (0.57)  

28 1.81 0.01 15 0.04 (0.23) -2.38 (0.79)  1.46 (0.61)  

29 1.91 0.01 15 0.01 (0.21) -2.43 (0.82)  1.32 (0.52)  

30 1.91 0.01 15 -0.00 (0.22) -2.36 (0.74)  1.39 (0.56)  

31 1.93 0.01 16 0.02 (0.21) -2.39 (0.82)  1.36 (0.56)  

32 1.95 0.01 15 -0.00 (0.23) -2.30 (0.78)  1.47 (0.60)  

Deer - dog 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓 A Intercept 𝜓 Ba Forest proportion HD RD 

1 0.00 0.05 13 -0.04 (0.18) -1.57 (0.58)  0.65 (0.29)  

2 0.71 0.03 14 -0.07 (0.19) -1.48 (0.59)  0.65 (0.29)  

3 1.13 0.03 14 -0.05 (0.18) -1.40 (0.620  0.65 (0.29)  

4 1.50 0.02 14 -0.04 (0.18) -1.56 (0.58)  0.64 (0.28)  

5 1.82 0.02 14 -0.04 (0.18) -1.57 (0.58)  0.65 (0.29)  

6 1.85 0.02 14 -0.02 (0.19) -1.58 (0.58)  0.61 (0.31)  

7 1.90 0.02 14 -0.04(0.18) -1.58 (0.58)  0.65 (0.29)  

8 1.96 0.02 14 -0.05 (0.19) -1.57 (0.58) -0.03 (0.16) 0.64 (0.30)  

9 2.00 0.02 14 -0.04 (0.19) -1.57 (0.58)  0.66 (0.31)  
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Crab-eating fox - dog 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓 A Intercept 𝜓 Ba Forest proportion HD RD 

1 0.00 0.03 14 0.54 (0.32)  -0.69 (0.31) 1.31 (0.98)  

2 0.26 0.02 13 0.47 (0.33)  -0.70 (0.31) 1.34 (0.98)  

3 0.56 0.02 13 0.62 (0.32)  -0.65 (0.30) 1.33 (0.98)  

4 1.06 0.02 15 0.53 (0.32)  -0.64 (0.30) 1.38 (0.99)  

5 1.18 0.01 14 0.52 (0.32) -0.68 (0.66) -0.64 (0.28) 1.27 (0.94)  

6 1.24 0.01 14 0.47 (0.32)  -0.68 (0.30) 1.36 (0.98)  

7 1.41 0.01 12 0.58 (0.32)  -0.67 (0.30) 1.33 (0.97)  

8 1.42 0.01 14 0.61 (0.32)  -0.59 (0.29) 1.41 (0.99)  

9 1.44 0.01 15 0.55 (0.33)  -0.68 (0.31) 1.31 (1.00)  

10 1.50 0.01 15 0.54 (0.32)  -0.75 (0.31) 1.23 (0.96)  

11 1.51 0.01 15 0.52 (0.32)  -0.69(0.31) 1.31 (0.98)  

12 1.63 0.01 15 0.55 (0.32) -0.45 (0.73) -0.65 (0.29) 1.28 (0.95)  

13 1.74 0.01 14 0.46 (0.32)  -0.71 (0.31) 1.34 (0.98)  

14 1.87 0.01 14 0.63 (0.33)  -0.63 (0.32) 1.33 (1.01)  

15 1.92 0.01 15 0.54 (0.32)  -0.69 (0.30) 1.36 (0.97)  

16 1.94 0.01 14 0.47 (0.33)  -0.68 (0.31) 1.36 (1.00)  

17 1.97 0.01 14 0.63 (0.32)  -0.72 (0.31) 1.23 (0.95)  

18 1.98 0.01 15 0.52 (0.34)  -0.69 (0.31) 1.30 (0.98) -0.06 (0.38) 

19 2.08 0.01 15 0.52 (0.32) -0.70 (0.65) -0.62 (0.28) 1.28 (0.93)  

Oncilla - dog 

    Untransformed coefficients of covariates (SE) 
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Models Δ AIC AIC weight 

NPa

r Intercept 𝜓 A Intercept 𝜓 Ba Forest proportion HD RD 

1 0.00 0.04 11 0.52 (0.26)   1.11 (0.64)  

2 0.13 0.04 12 0.49 (0.26) 1.00 (0.92)  1.21 (0.65)  

3 1.09 0.02 13 0.49 (0.25) 1.07 (0.90)  1.23 (0.68)  

4 1.28 0.02 15 0.54 (0.24) 1.16 (0.94)  1.17 (0.62)  

5 1.34 0.02 12 0.54 (0.26)   1.12 (0.67)  

6 1.65 0.02 12 0.52 (0.26)   1.11 (0.64)  

7 1.75 0.02 12 0.52 (0.26)   1.11 (0.64)  

8 1.78 0.02 13 0.49 (0.26) 1.01 (0.93)  1.20 (0.65)  

9 1.83 0.02 13 0.49 (0.26) 1.01 (0.91)  1.21 (0.65)  

10 1.87 0.02 12 0.53 (0.27)   1.11 (0.67)  

11 1.91 0.02 12 0.52 (0.26)   1.13 (0.64)  

12 1.95 0.02 13 0.48 (0.27) 0.98 (0.86)  1.20 (0.65)  

13 1.97 0.02 13 0.50 (0.27) 1.01 (0.91)  1.19 (0.67)  

14 1.97 0.02 12 0.52 (0.26)   1.10 (0.65)  

15 1.99 0.02 12 0.52 (0.26)   1.11 (0.64)  

Ocelot - dog 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 0.03 13 2.10 (0.78)   5.35 (2.42)  

2 0.45 0.03 13 2.09 (7.83)   5.23 (2.42)  

3 1.02 0.02 17 2.57 (0.96)   6.92 (2.94)  

4 1.02 0.02 17 2.57 (0.96)   6.92 (2.94)  
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5 1.55 0.02 15 2.12 (0.79)   5.53 (2.44)  

6 1.55 0.02 15 2.12 (0.79)   5.53 (2.44)  

7 1.55 0.02 15 2.12 (0.79)   5.53 (2.44)  

8 1.55 0.02 15 2.12 (0.79)   5.53 (2.44)  

9 1.78 0.01 17 2.57 (0.96)   6.89 (2.94)  

10 1.79 0.01 17 2.57 (0.95)   6.91 (2.92)  

11 1.96 0.01 14 2.08 (0.78)   5.25 (2.42)  

Armadillo - human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 0.02 15 -0.38 (0.19)  -0.45 (0.17) 0.38 (0.26)  

2 0.46 0.02 14 -0.42 (0.18)  -0.52 (0.16)   

3 0.94 0.02 16 -0.40 (0.19)  -0.43 (0.17) 0.36 (0.26)  

4 0.96 0.01 14 -0.39 (0.19)  -0.45 (0.16) 0.36 (0.25)  

5 1.15 0.01 15 -0.45 (0.19)  -0.50 (0.160   

6 1.16 0.01 16 -0.37 (0.19)  -0.44 (0.17) 0.39 (0.27)  

7 1.29 0.01 13 -0.42 (0.18)  -0.52 (0.16)   

8 1.51 0.01 17 -0.39 (0.19)  -0.42 (0.17) 0.37 (0.27)  

9 1.67 0.01 15 -0.42 (0.18)  -0.51 (0.16)   

10 1.68 0.01 15 -0.44 (0.18)  -0.49 (0.16)   

11 1.75 0.01 16 -0.44 (0.18)  -0.49 (0.16)   

12 1.81 0.01 13 -0.37 (0.20)  -0.45 (0.17) 0.43 (0.29)  

13 1.85 0.01 15 -0.41 (0.19)  -0.44 (0.17) 0.34 (0.25)  

14 1.92 0.01 16 -0.42 (0.24) 0.13 (0.45) -0.46 (0.17) 0.38 (0.26)  
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15 1.94 0.01 14 -0.44 (0.18)  -0.50 (0.16)   

16 2.00 0.01 16 -0.38 (0.19)  -0.45 (0.17) 0.39 (0.28)  

Paca - human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 0.04 16 0.01 (0.21) -2.35 (0.74)  1.34 (0.54)  

2 0.24 0.03 15 -0.01 (0.21) -2.39 (0.75)  1.30 (0.51)  

3 0.31 0.03 15 0.01 (0.21) -2.39 (0.82)  1.34 (0.54)  

4 0.38 0.03 14 0.02 (0.22) -2.38 (0.79)  1.42 (0.59)  

5 0.55 0.03 14 -0.01 (0.21) -2.42 (0.82)  1.30 (0.51)  

6 0.61 0.03 13 0.01 (0.22) -2.40 (0.80)  1.38 (0.56)  

7 0.66 0.03 15 0.02 (0.22) -2.36 (0.74)  1.43 (0.59)  

8 0.77 0.02 16 -0.02 (0.22) -2.26 (0.75)  1.39 (0.57)  

9 0.90 0.02 14 -0.00 (0.22) -2.38 (0.75)  1.38 (0.56)  

10 1.08 0.02 14 0.00 (0.23) -2.34 (0.80)  1.46 (0.59)  

11 1.08 0.02 15 0.02 (0.23) -2.34 (0.77)  1.45 (0.63)  

12 1.08 0.02 17 0.00 (0.22) -2.23 (0.74)  1.45 (0.59)  

13 1.19 0.02 15 -0.00 (0.23) -2.30 (0.75)  1.47 (0.59)  

14 1.24 0.02 15 -0.01 (0.22) -2.31 (0.82)  1.38 (0.56)  

15 1.25 0.02 17 0.00 (0.21) -2.34 (0.74)  1.35 (0.54)  

16 1.25 0.02 16 0.01 (0.21) -2.34 (0.80)  1.34 (0.54)  

17 1.38 0.02 14 -0.00 (0.22) -2.37 (0.77)  1.39 (0.56)  

18 1.44 0.02 15 0.02 (0.23) -2.31 (0.79)  1.50 (0.62)  

19 1.51 0.02 16 0.10 (0.24) -2.38 (0.76)  1.65 (0.67)  
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20 1.52 0.02 16 -0.02 (0.21) -2.37 (0.75)  1.30 (0.51)  

21 1.54 0.02 16 0.01 (0.22) -2.27 (0.81)  1.42 (0.60)  

22 1.54 0.02 15 -0.01 (0.21) -2.38 (0.80)  1.30 (0.51)  

23 1.56 0.02 16 0.02 (0.23) -2.27 (0.74)  1.52 (0.61)  

24 1.62 0.02 16 0.02 (0.22) -2.33 (0.73)  1.45 (0.60)  

25 1.62 0.02 16 -0.00 (0.21) -2.39 (0.75)  1.32 (0.52)  

26 1.65 0.02 17 0.02 (0.22) -2.36 (0.75)  1.37 (0.56)  

27 1.75 0.02 14 0.02 (0.22) -2.41 (0.79)  1.41 (0.57)  

28 1.81 0.01 15 0.04 (0.23) -2.38 (0.79)  1.46 (0.61)  

29 1.91 0.01 15 0.01 (0.21) -2.43 (0.82)  1.32 (0.52)  

30 1.91 0.01 15 -0.00 (0.22) -2.36 (0.74)  1.39 (0.56)  

31 1.93 0.01 16 0.02 (0.21) -2.39 (0.82)  1.36 (0.56)  

32 1.95 0.01 15 -0.00 (0.23) -2.30 (0.78)  1.47 (0.60)  

Deer - human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 0.03 12 -0.55 (0.20) -0.64 (0.39)  0.36 (0.22)  

2 0.88 0.02 11 -0.73 (0.17)   0.34 (0.22)  

3 0.97 0.02 11 -0.56 (0.19) -0.62 (0.38)    

4 1.06 0.02 13 -0.55 (0.20) -0.64 (0.39)  0.37 90.230  

5 1.21 0.02 13 -0.51 (0.21) -0.65 (0.39)  0.32 (0.23) 0.20 (0.23) 

6 1.38 0.01 12 -0.51 (020) -0.63 (0.39)  0.27 (0.21)  

7 1.48 0.01 13 -0.55 (0.20) -0.64 (0.39)  0.36 (0.22)  

8 1.74 0.01 13 -0.56 (0.20) -0.63 (0.39)  0.36 (0.23)  
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9 1.76 0.01 13 -0.56 (0.20) -0.63 (0.39)  0.36 (0.22)  

10 1.77 0.01 10 -0.73 (0.16)     

11 1.86 0.01 11 -0.56 (0.20) -0.66 (0.40)  0.31 (0.23)  

12 1.87 0.01 13 -0.55 (0.20) -0.63 (0.39)  0.35 (0.23)  

13 1.95 0.01 10 -0.57 (0.20) -0.66 (0.39)    

14 1.95 0.01 12 -0.73 (0.17)   0.35 (0.22)  

15 1.96 0.01 13 -0.55 (0.20) -.64 (0.39) -0.03 (0.15) 0.35 (0.23)  

16 2.00 0.01 13 -0.55 (0.20) -0.64 (0.39)  0.36 (0.23)  

Crab-eating fox - human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0 0.03 12 -0.14 (0.22)  -0.54 (0.20)   

2 0.4145 0.03 12 -0.16 (0.22)  -0.57 (0.21)   

3 0.4356 0.03 12 -0.12 (0.22)  -0.49 (0.22) 0.21 (0.28)  

4 0.6639 0.02 12 -0.15 (0.22)  -0.55 (0.21)   

5 0.6842 0.02 12 -0.07 (0.25) -0.29 (0.50) -0.55 (0.20)   

6 0.8993 0.02 12 -0.13 (0.22)  -0.53 (0.21)  0.07 (0.20) 

7 0.9309 0.02 12 -0.15 (0.22)  -0.55 (0.21)   

8 1.0133 0.02 12 -0.15 (0.22)  -0.55 (0.21)   

9 1.3799 0.02 13 -0.15 (0.22)  -0.57 (0.21)   

10 1.3955 0.02 13 -0.11 (0.22)  -0.50 (0.21) 0.21 (0.28)  

11 1.7458 0.01 13 -0.07 (0.25) -0.25 (0.51) -0.55 (0.20)   

12 1.8283 0.01 13 -0.14 (0.22)  -0.52 (0.22) 0.20 (0.28)  

13 1.8792 0.01 13 -0.12 (0.22)  -0.53 (0.21)  0.07 (0.19) 
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14 1.8866 0.01 13 -0.14 (0.22)  -0.55 (0.21)   

15 1.961 0.01 13 -0.14 (0.22)  -0.55 (0.21)   

Oncilla - human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 0.06 13 -0.13 (0.20)   -0.65 (0.28) 0.59 (0.27) 

2 1.17 0.03 13 -0.23 (0.22) 0.93 (0.54)  -0.64 (0.26) 0.55 (0.27) 

3 1.18 0.03 14 -0.21 (0.22) 0.47 (0.53)  -0.65 (0.27) 0.59 (0.27) 

4 1.39 0.03 14 -0.14 (0.20)   -0.65 (0.28) 0.60 (0.27) 

5 1.47 0.03 14 -0.17 (0.20)   -0.64 (0.27) 0.60 (0.27) 

6 1.58 0.03 14 -0.15 (0.20)   -0.65 (0.27) 0.60 (0.27) 

7 1.70 0.02 14 -0.14 (0.20)   -0.64 (0.27) 0.59 (0.27) 

8 1.98 0.02 14 -0.13 (0.21)  0.02 (0.17) -0.65 (0.28) 0.60 (0.28) 

Ocelot - human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 1.00 13 -0.37 (0.20) 1.43 (0.89)  -0.69 (0.43)  

2 0.48 0.79 15 -0.45 (0.21) 1.26 (0.76)  -0.72 (0.44)  

3 1.13 0.57 14 -0.37 (0.20) 1.44 (0.97)  -0.70 (0.44)  

4 1.40 0.50 14 -0.33 (0.21) 1.41 (0.87)  -0.76 (0.44) 0.23 (0.30) 

5 1.48 0.48 16 -0.45 (0.21) 1.26 (0.81)  -0.72 (0.44)  

6 1.68 0.43 16 -0.40 (0.22) 1.25 (0.75)  -0.81 (0.45) 0.27 (0.31) 

7 1.97 0.37 14 -0.37 (0.20) 1.47 (0.92)  -0.71 (0.44)  
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8 1.99 0.37 14 -0.37 (0.20) 1.43 (0.89)  -0.69 (0.43)  

Armadillo – dog and human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 0.35 19 -0.86 (0.25) 0.76 (0.40) -0.41 (0.16) 0.33 (0.24)  

2 1.03 0.21 18 -0.82 (0.24) 0.73 (0.40) -0.40 (0.16) 0.33 (0.24)  

3 1.67 0.15 17 -0.86 (0.25) 0.74 (0.40) -0.44 (0.17) 0.33 (0.24)  

Paca – dog and human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 0.08 16 -0.92 (0.20)   1.16 (0.34)  

2 0.19 0.07 15 -0.92 (0.20)   1.15 (0.34)  

3 0.51 0.06 14 -0.93 (0.20)   1.17 (0.35)  

4 0.60 0.06 14 -0.93 (0.20)   1.19 (0.35)  

5 0.86 0.05 15 -0.93 (0.20)   1.18 (0.35)  

6 0.92 0.05 17 -0.88 (0.20)   1.17 (0.34) 0.26 (0.24) 

7 1.09 0.04 16 -0.88 (0.20)   1.17 (0.34) 0.26 (0.24) 

8 1.29 0.04 15 -0.89 (0.20)   1.19 (0.35) 0.28 (0.24) 

9 1.35 0.04 15 -0.91 (0.20)   1.16 (0.34)  

10 1.37 0.04 17 -0.92 (0.20)   1.17 (0.35)  

11 1.46 0.04 15 -0.89 (0.20)   1.20 (0.35) 0.27 (0.24) 

12 1.49 0.04 15 -0.94 (0.20)   1.19 (0.35)  

13 1.53 0.04 14 -0.91 (0.20)   1.15 (0.34)  
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14 1.63 0.03 15 -0.93 (0.20)   1.20 (0.36)  

15 1.65 0.03 17 -0.89 (0.20)   1.20 (0.35) 0.28 (0.24) 

16 1.68 0.03 17 -0.89 (0.20)  0.11 (0.18) 1.21 (0.37)  

17 1.74 0.03 15 -0.93 (0.20)   1.20 (0.36)  

18 1.75 0.03 16 -0.93 (0.20)   1.16 (0.35)  

19 1.85 0.03 16 -0.93 (0.20)   1.20 (0.35)  

20 1.86 0.03 13 -0.93 (0.20)   1.17 (0.35)  

21 1.91 0.03 16 -0.89 (0.20)  0.10 (0.18) 1.20 (0.37)  

22 1.92 0.03 16 -0.99 (0.25) 0.20 (0.39)  1.17 (0.34)  

23 1.95 0.03 17 -0.96 (0.25) 0.11 (0.39)  1.16 (0.34)  

Deer – dog and human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0 0.08 16 0.11 (0.25) -2.43 (0.59)  0.65 (0.37) 0.55 (0.39) 

2 0.23 0.07 17 0.10 (0.25) -2.43 (0.59) -0.21 (0.21) 0.55 (0.34) 0.61 (0.41) 

3 0.82 0.05 16 0.15 (0.26) -2.54 (0.65)  0.58 (0.37) 0.58 (0.40) 

4 0.82 0.05 17 0.11 (0.25) -2.52 (0.57) -0.20 (0.20) 0.58 (0.35) 0.60 (0.40) 

5 1.29 0.04 17 0.12 (0.25) -2.52 (0.57) -0.20 (0.20) 0.58 (0.35) 0.60 (0.40) 

6 1.29 0.04 16 0.14 (0.25) -2.56 (0.58)  0.65 (0.37) 0.55 (0.38) 

Crab-eating fox – dog and human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0 0.04 14 -0.24 (0.22)  -0.53 (0.21)   
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2 0.0 0.04 14 -0.23 (0.22)  -0.50 (0.21)   

3 0.29 0.03 13 -0.20 (0.24)  -0.66 (0.20)   

4 0.46 0.03 13 -0.19 (0.24)  -0.64 (0.20)   

5 0.53 0.0 14 -0.22 (0.21)  -0.56 (0.21)   

6 0.78 0.03 14 -0.18 (0.22)  -0.55 (0.21) 0.34 (0.29)  

7 0.88 0.02 14 -0.21 (0.22) -0.55 (0.21)    

8 1.03 0.02 14 -0.26 (0.22) -0.52 (0.21)    

9 1.11 0.02 14 -0.25 (0.22) -0.49 (0.21)    

10 1.12 0.02 15 -0.22 (0.22)  -0.48 (0.21) 0.26 (0.31)  

11 1.23 0.02 15 -0.21 (0.22)  -0.62 (0.20)   

12 1.25 0.02 15 -0.23 (0.21)  -0.51 (0.21)   

13 1.52 0.02 14 -0.18 (0.25) -0.21 (0.52) 0.53 (0.21)   

14 1.77 0.02 15 -0.19 (0.26) -0.15 (0.52) -0.50 (0.21)   

Oncilla – dog and human 

    Untransformed coefficients of covariates (SE) 

Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 0.07 12 -0.95 (0.25) 1.14 (0.38)    

2 0.00 0.07 12 -0.95 (0.25) 1.14 (0.39)    

3 0.06 0.07 16 -0.97 (0.24) 1.04 (0.39)  0.35 (0.22)  

4 0.07 0.07 13 -0.95 (0.25) 1.16 (0.39)    

5 0.07 0.07 13 -0.95 (0.25) 1.16 (0.39)    

6 1.08 0.04 17 -0.89 (0.27) 1.08 (0.39)  0.39 (0.25) 0.36 (0.41) 

Ocelot – dog and human 

    Untransformed coefficients of covariates (SE) 
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Models Δ AIC AIC weight 

NPa

r Intercept 𝜓A Intercept 𝜓Ba Forest proportion HD RD 

1 0.00 0.06 15 -0.75 (0.20)  0.39 (0.20) -0.41 (0.31)  

2 0.12 0.06 16 -0.77 (0.20)  0.38 (0.20) -0.44 (0.33)  

3 0.71 0.04 15 -0.76 (0.20)  0.38 (0.20) -0.44 (0.33)  

4 1.03 0.04 14 -0.72 (0.20)  0.42 (0.19)   

5 1.36 0.03 14 -0.73 (0.20)  0.39 (0.20) -0.40 (0.32)  

6 1.66 0.03 15 -0.79 (0.21)  0.40 (0.19) -0.34 (0.32)  

7 1.76 0.03 16 -0.83 (0.26) 0.21 (0.42) 0.39 (0.20) -0.41 (0.31)  

8 1.80 0.03 16 -0.74 (0.20)  0.38 (0.20) -0.41 (0.31)  

9 1.88 0.02 17 -0.76 (0.20)  0.38 (0.20) -0.44 (0.33)  

10 1.89 0.02 17 -0.84 (0.26) 0.20 (0.42) 0.38 (0.20) -0.44 (0.33)  

11 1.97 0.02 16 -0.76 (0.22)  0.38 (0.20) -0.38 (0.33) -0.07 (0.37) 

 

Covariates: Proportion of forest within buffers around camera traps; HD: housing density within buffers around camera 

traps; RD: road density within buffers around camera traps. The buffer radius varied from 250 m to 2000 m depending on 

the species pair. 𝜓A = probability that the area is initially occupied by the dominant species, 𝜓Ba = probability that the area 

is initially occupied by the subordinate species when the dominant species is absent.  Beta coefficients for 𝜓Ba is calculated 

only when models included the INT parameter (interaction between species); otherwise, 𝜓A = 𝜓Ba. 
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Appendix 4. Kernel density estimates representing diel activity curves and temporal activity 

overlap for six native mammals among sites with smaller (ψ<0.55), in black solid line, and 

larger probabilities of use (ψ>0.55) by dogs, in blue dashed line. Periods of activity overlap is 

represented by the overlap coefficient (Δ), where Δ=1 represents no activity shift by native 

mammals between sites with smaller or larger probability of use by dogs, whereas Δ=0 

indicates complete activity shift. ∆4 was used when the number of detections of the species at 

the two categories of sites (with higher or smaller probability of use by dogs) was larger than 

75. ∆1 was used otherwise. 
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Appendix 5. Kernel density estimates representing diel activity ucrves and temporal activity 

overlap for six native mammals among sites with smaller (ψ<0.58), in black solid line, and 

larger probabilities of use (ψ>0.58) by humans, in blue dashed line. Periods of activity overlap 

is represented by the overlap coefficient (Δ), where Δ=1 represents no activity shift by native 

mammals between sites with smaller or larger probability of use by humans, whereas Δ=0 

indicates complete activity shift. ∆4 was used when the number of detections of the species at 

the two categories of sites (with higher or smaller probability of se by humans) was larger than 

75. ∆1 was used otherwise. 
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CHAPTER 3 - SCALE AFFECTS HOW FOREST COVER INFLUENCES APPARENT COMMUNITY SHIFTS IN ATLANTIC 

FOREST MAMMALS IN SOUTHEASTERN BRAZIL 

ABSTRACT 

Habitat loss is reported as the major factor contributing to the biodiversity crisis. Following 

habitat destruction, there is often a time lag before species extinctions occur for many animal 

groups, including mammals. Additionally, species and trophic guilds might respond differently 

to habitat loss, with some species being harmed while others, more generalists, are benefited. 

In this chapter, I aimed to evaluate how medium and large mammal species respond in terms 

of habitat use to different proportions of forest left in Atlantic Forest landscapes in Southeast 

Brazil, while controlling for anthropogenic and environmental variables, as well as the 

influence of scale. I sampled a 66,870 km2 area that has been relatively stable in terms of 

forest loss since at least 1985, using 275 camera trap sites distributed in four camera trap 

sessions: 2013 and 2014, 2017, 2018, and 2019. To account for the imperfect detection of 

species, we used a multi-species multi-session occupancy models in a Bayesian framework, 

with species and sessions as random effects. All terrestrial species (N=28) detected at least 

once during the 20,383 camera trap days were included in the analysis. After correcting the 

probability of use considering the imperfect detection, carnivores and omnivores such as 

Didelphis aurita, Herpailurus yagouaroundi, Galictis cuja, and Eira barbara were the most 

common species throughout the study area. On the other hand, frugivores were the rarest 

trophic guild, with at least three species having probability of use smaller than 10% in the 

entire area: Dasyprocta iacki, Tayassu pecari, and Tapirus terrestris. Species from other trophic 

guilds (carnivore, omnivore, and herbivores) were also rare in this landscape: Panthera onca, 

Chrysocyon brachyurus, Hydrochoerus hydrochaeris, and Sylvilagus minensis. At about 78% of 

forest amount, there was a shift between generalist species (i.e., Cerdocyon thous, Dasypus 
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spp., Myrmecophaga tridactyla, and S. minensis), and species that are more dependent on 

forest amount (P. onca, D. iacki, D. tajacu, T. terrestris, and T. pecari), with generalists 

decreasing their probability of use and forest specialists becoming more common across the 

landscape in regions with more than 78% of forest cover (on 2 X 2 km landscape cells). 

Differently than has been suggested by other studies, the conservation of about 40% of forest 

within landscapes (about 50% in our study) would not guarantee the persistence of most 

forest species. As 72% of the studied landscape presents grid cells with less than 78% of forest 

cover, and this situation is commonly found in other regions within the Atlantic Forest biome, 

we might have already lost ecosystem services provided by medium and large frugivores in 

most of the biome. This situation implies that forest regeneration is already needed in order to 

create habitat suitable for the whole community of medium and large-sized mammals.  

INTRODUCTION 

Among the myriad threats affecting biodiversity, habitat loss remains paramount (Andrén 

1994; Sala et al. 2000; Brooks et al. 2002; Pimm et al. 2014). Human uses of land have already 

modified up to 75% of  the Earth’s surface (Ellis and Ramankutty 2008), with accelerated 

changes in land use anticipated in many regions, i.e., tropical forests, savannas, warm mixed 

forests (Vitousek et al., 1997). To enable effective triage, scientists have long sought ecological 

thresholds, critical points where small additional losses of habitat could lead to abrupt declines 

in population abundance or species richness (Swift and Hannon 2010), and tipping points, 

situations where accelerating changes drives the system to a new state (van Nes et al. 2016). 

The concept of a habitat threshold is predicated on a nonlinear relationship between habitat 

amount and an ecological response (i.e., species richness, abundance, occurrence; (Bascompte 

and Solé, 1996; Fahrig, 2003, 2001; Hill and Caswell, 1999). Knowledge of critical thresholds 

should aid biodiversity conservation, e.g., by more effectively guiding the establishment of 
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protected areas in otherwise human-modified landscapes (Banks-Leite et al. 2014; Arroyo-

Rodríguez et al. 2020). 

Identifying critical habitat thresholds remains challenging in part due to time lags between the 

onset of habitat loss and animal population responses, i.e., so called “extinction debt”.  The 

time lag (debt) between reaching the critical threshold and observing population changes may 

span decades for birds, amphibians, reptiles, and mammals (Tilman et al. 1994; Cowlishaw 

1999; Metzger et al. 2009; Halley et al. 2016; Chen and Peng 2017; Semper-Pascual et al. 

2018)—during which time habitat loss may have continued unabated. There is some 

substantial support for critical thresholds occurring at ~10-30% of remaining habitat, below 

which ecological responses (e.g., species richness) of different groups (i.e., small mammals, 

amphibians, birds, trees) showed a more pronounced decrease with additional loss of habitat 

in both empirical and theoretical studies (Andrén 1994; Gibbs 1998; Banks-Leite et al. 2014; 

Lima and Mariano-Neto 2014; Boesing et al. 2017; Leite et al. 2018). Yet, a lot of residual 

variation remains, and, for some species or regions, critical thresholds have been identified at 

higher habitat amounts (Bascompte and Solé 1996; Gibbs 1998; With et al. 1999; Schrott et al. 

2005; Jager et al. 2006; Rigueira et al. 2013). In fact, critical thresholds are expected at higher 

habitat amounts in the tropics (Rigueira et al. 2013; Morante-filho et al. 2015), where species 

turnover among localities is high (Arroyo-Rodríguez et al. 2013; Solar et al. 2015).  Moreover, 

higher threshold values are expected for species that occur at low densities (Gibbs 1998; Swift 

and Hannon 2010), have low reproductive rates (Vance et al. 2003; Holland et al. 2005), or 

occupy landscapes where the quality of the matrix (areas surrounding habitat patches) is low 

(Fahrig 2001; Swift and Hannon 2010; Boesing et al. 2017). However, most empirical studies 

failed to sample landscapes where habitat amounts exceeded 50% of the landscape, for either 

theoretical or logistic reasons (Swift and Hannon 2010), which may mask the occurrence of 
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thresholds or bias estimates where they are detected due to truncation of the data range 

(Brennan et al. 2002; Boyce 2006; Eigenbrod et al. 2011; Frair and Bastille-Rousseau 2021).  

In addition to being affected by extent of the study region under consideration, extinction 

thresholds likely vary with the local scale at which habitat proportion is measured (Banks-Leite 

et al. 2021).  Yet, very few studies have tested measures on more than one scale when 

attempting to isolate critical thresholds (Homan et al. 2004; Lindenmayer et al. 2005). 

Moreover, despite the multi-scale nature of animal-habitat associations (Boscolo and Metzger 

2009; Lyra-Jorge et al. 2010), most studies have included only fine-scale investigations, e.g., 

extents covering m2 to not more than ~5 km2 (Guerry and Hunter 2002; Imbeau and 

Desrochers 2002; Reunanen et al. 2004). The relative importance of fine- versus broad-scale 

influences on species distribution varies widely (Wiens 1989; Frair et al. 2005; Boscolo and 

Metzger 2009; Lyra-Jorge et al. 2010; Alvarenga et al. 2021), perhaps due to differing habitat 

requirements, biological traits (e.g., body size), and perception ranges (Gutzwiller 2002). 

Therefore, the choice of appropriate spatial scale – in terms of both extent and resolution – 

should be considered in relation to the organisms and processes of interest over a particular 

time frame (Freemark et al. 2002).  

As habitats become even rarer, fragmented, or otherwise diminished in quality, we can expect 

differential responses within the mammalian community (Newbold et al. 2014; Dornelas et al. 

2019). Whereas larger-bodied mammals may decrease in number or go locally extinct as 

habitat declines (Crooks and Soulé 1999; Crooks 2002; Peres and Palacios 2007; Pimm et al. 

2014), other species, e.g., habitat generalists, may increase in abundance or distribution 

(Mouquet et al. 2011). Carnivores appear particularly sensitive to anthropogenic disturbances, 

yet omnivores and herbivores are often observed using disturbed landscapes and edge 

habitats (Michalski and Peres 2005; Storm et al. 2007; Erb et al. 2012; Young et al. 2016). As a 
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result, shifts in community composition are expected across landscapes varying in the amount 

of residual habitat. Such community shifts, especially the loss of strongly interacting or 

keystone species, may drive cascading effects to ecosystem functions critical for both wildlife 

and human well-being (Dirzo et al. 2014; Malhi et al. 2016; Young et al. 2016). Among other 

services, medium and large-sized mammals are sources of top-down regulation of prey and 

seed dispersal (Terborgh et al. 1999; Terborgh et al. 2010; Estes et al. 2011; Ordiz et al. 2013; 

Ripple et al. 2015; Van Valkenburgh et al. 2015). The magnitude of change in ecosystem 

function due to altered biotic communities may depend on the degree to which differente 

trophic guilds respond to habitat loss. Consideration of ecological guilds, i.e., groups of species 

that exploit resources in a similar way (Root 1967; Simberloff and Dayan 1991), might better 

elucidate habitat thresholds and the resulting shift in community dominance compared to 

single species assessments (Bueno et al. 2013; Galetti and Dirzo 2013; Jorge et al. 2013; Dirzo 

et al. 2014; Genes et al. 2017). 

Herein, I applied multi-scale, multi-species occupancy models to investigate critical habitat 

thresholds for mid- to large-bodied terrestrial mammals within the Atlantic Forest of Brazil.  

Deforestation of the Atlantic Forest has a long history, beginning with the arrival of the first 

Europeans to the South American continent in the sixteenth century, which spurred massive 

agricultural expansion followed by industrialization and urbanization (Dean, 1995). Today the 

Atlantic Forest is one of the most endangered biodiversity hotspots in the world (Myers et al., 

2000), with less than 12% of the original vegetation left and more than 80% of remaining 

forest remnants smaller than 50 ha (Ribeiro et al., 2009). In some regions, protected areas 

have retained abundant forest habitat along with the suite of forest mammals expected to 

occur across the Atlantic Forest. Importantly, since ~1985, the average yearly rate of change in 

forest cover has been negligible to slightly positive,+0.05% (Souza et al., 2020), with even 

higher rates of reforestation in some regions (Lira et al., 2012). Given relative stability in the 
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pattern of forest cover over the past several decades, extant communities within the Atlantic 

Forest likely exist beyond the cycle of extinction debt that can muddy the detection of critical 

ecological thresholds.  As such, my study within São Paulo state represents an ideal model 

system for investigating community responses to local forest amount. Using community-level 

occupancy models, I examined how apparent thresholds in habitat amount might vary among 

trophic guilds (e.g., frugivores, carnivores, omnivores, herbivores, and insectivores) as well as 

with the scale of observation.  

METHODS 

STUDY AREA  

The 66,870 km2 study area was situated in São Paulo and Minas Gerais states, Southeastern 

Brazil (Figure 1), and encompassed five major metropolitan regions (São Paulo, Baixada 

Santista, Campinas, Vale do Paraíba e Litoral Norte, and Sorocaba) ranging in size from 1.7 to 

more than 20 million people (IBGE 2010). Roughly 72% of the Brazilian population – more than 

145 million people – live within the domain of the Atlantic Forest (IBGE 2014). Although the 

physical urban footprint remains relatively small (2-3.3% of biome extent), associated 

infrastructure connecting metropolitan areas, e.g., roads, extends human effects into 

surrounding landscapes including protected areas (Seto et al. 2012). The selected study area 

encompassed both highly fragmented forest as well as large tracts of contiguous forest, 

including the largest remaining Atlantic Forest remnant (Serra do Mar, situated close to the 

coast). 
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DATA COLLECTION 

I deployed a series of camera traps across the study area (Figure 1), and organized 

deployments into four different sessions defined by year of deployment (Tobler et al. 2015).  

Cameras included four brands: Bushnell Trophy Cam (models 119636, 199537, 119636, 

119736, 119774, 119776), Moultrie (MCG13183, 990i, 1100i), Browning Dark OPS HD, and 

Spypoint Solar. All cameras were fixed at 30-40 cm above ground. Cameras were set to take 

videos with the fastest recovery time available for each model (usually up to a few seconds). 

All native mammal species detected at least once were included in the analyses to follow 

(Burton et al., 2012; Rich et al., 2016; Tobler et al., 2015), except for primates (Alouata 

guariba, and Sapajus nigritus) and porcupines (Coendou prehensilis), which are primarily 

arboreal and not reliably detectable by my camera set ups.  I note that Tamandua tetradactyla 

and Guerlinguetus brasiliensis, although also arboreal, yielded a considerable amount of 

detections (N=9 and 119, respectively using 1 week as the sampling occasion, see description 

later) and were thus included in this modeling effort. For indistinct pairs of species (Mazama 

gouazoubira vs. Mazama americana, Dasypus novemcinctus vs. Dasypus septemcinctus, and 

Cabassous tatouay vs. Cabassous unicinctus), I classified each to genus in lieu of species.  

Ultimately, data from 25 species and three genera were retained. These species further 

represented five trophic guilds: carnivores (N = 6), frugivores (N = 5), herbivores (N = 3), 

insectivores (N = 5), and omnivores (Paglia et al., 2012); Appendix 1). For species with diets 

that could be classified into more than one trophic guild, I assigned their guild based on dietary 

predominance (Paglia et al., 2012). For instance, paca (Cuniculus paca) was considered a 

frugivore given >50% of the items comprising its diet are fruits (Dubost and Henry, 2006). 

To quantify forest cover, I chose a range of sampling extents anchored roughly by the home 

range sizes expected across this mammalian community.  For example, smaller species, e.g., S. 



89 

 

minensis, Didelphis aurita, Guerlinguetus brasiliensis, and C. paca, have home ranges on the 

order of 0.5 x 0.5 km (Swihart 1986; Beck-King and von Helversen 1999; Bordignon and 

Monteiro-Filho 2000; Cáceres and Monteiro-Filho 2001; Cáceres 2003; Benavides et al. 2017) 

while larger species, e.g., Panthera onca, occupy home ranges on the order of 15 x 15 km 

(Cavalcanti and Gese 2009; Mazzolli 2010; Morato et al. 2016; Azevedo et al. 2020).  

Ultimately, I considered nine different square sampling extents having sides = 0.25, 0.5, 1, 2, 4, 

8, 15, 30, or 60 km, and calculated the percentage of area covered by forest within each extent 

using ArcGIS.  Forest cover was mapped using classified Landsat 7 images (30 m resolution; 

(MMA/PROBIO, 2007).  Sample locations effectively captured variation in forest cover across 

the region, which ranged between 3-20% at the low end to 90-100% at the high end, 

depending upon the selected sampling extent (Table 1).   

I included two additional site-specific metrics thought to influence species distribution across 

the region – human disturbance and elevation.  For the former, I used the human footprint 

index (Venter et al., 2016), whose values range 0-100 and were derived from a combination of 

human population density, human land use and infrastructure, and human access (mapped at 

a 1 km resolution; Table 1).  Lastly, the elevation of each camera site was recorded using 

Shuttle Radar Topography Mission (SRTM) data at 89 m resolution (Weber et al., 2004).  

MODELING FRAMEWORK 

I fit multi-species, multi-scale, and multi-session occupancy models using a Bayesian approach 

(MacKenzie et al. 2002; Tobler et al. 2015). In contrast to previous studies investigating forest 

cover thresholds, the multi-species modeling framework should improve parameter estimates, 

especially for species with sparse data, because species-level parameters are drawn from a 

common hyper-distribution for the community rather than being modeled independently 

(Kéry and Royle 2016).   
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For this analysis I first collapsed each session into 7-day sampling occasions (see Chapter 1). 

Since not all camera trap sites were repeated in all sessions, I modeled session as a random 

effect on occupancy and detection (Tobler et al., 2015). Species-level parameters were also 

assumed to be random effects drawn from a normal distribution governed by community-level 

hyperparameters (Zipkin et al. 2009; Petracca et al. 2019). Given that high abundance species 

were likely to have increased detection probabilities and caused strong, positive correlations 

between occupancy and detection (Royle and Nichols 2003), I modeled the correlation (𝜌) 

between occurrence and detection by allowing their random intercepts to be jointly 

distributed (Zipkin et al. 2009; Kéry and Royle 2016; Rich et al. 2016). Ultimately, given the 

long-term nature of camera deployments, and assuming movements into and out of the 

sampled area (camera trap sites) to be random, I relaxed the closure assumption and 

interpreted the occupancy parameter as the probability of use (Mackenzie and Royle 2005).   

I first denoted z(i,j) to be the site-specific occupancy (i.e., “true” presence/ absence) for 

species i = 1, 2, …, R at site j = 1, 2, …, S, such that z(i,j) = 1 if species i occurred at site j and zero 

otherwise. Occurrence probability was modelled as 𝑧(𝑖, 𝑗)~𝐵𝑒𝑟𝑛(𝜓𝑖,𝑗), where 𝜓𝑖,𝑗 is the 

probability that species i occurred at site j. Models were organized to account for three 

hierarchical levels: (1) session-level m community (all species occurring at the study site within 

a session), (2) site-level community (occurrence process determining the species present in the 

vicinity of each camera trap location within a specified sampling extent), and (3) detection of a 

species given its occurrence at a site (Tobler et al., 2015). For detection probability, each 

model included 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘) = 𝑢𝑖𝑚 + 𝛽1𝑖𝑒𝑓𝑓𝑜𝑟𝑡𝑗 + 𝛽2𝑖𝑡𝑟𝑎𝑖𝑙𝑗, where effort was the number 

of days each camera trap was operational and trail indicated whether the camera was placed 

on (y=1) or off (y=0) a trail.  
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Given no significant correlations among the three main covariates (r < |0.4|, Appendix 2), the 

base occupancy model was specified as: 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑖𝑗) =  𝑢𝑖𝑚 + 𝛽1𝑖 𝑓𝑜𝑟𝑒𝑠𝑡𝑗 + 𝛽2𝑖 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑗 + 𝛽3𝑖 ℎ𝑢𝑚𝑎𝑛 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑗 Model 1 

where, 𝑢𝑖𝑚 was the random intercept for species i and session m, which followed a normal 

distribution having mean and variance governed by community hyperparameters (i.e., 

𝑢𝑖𝑚 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑢, 𝜎𝑢
2), 𝜎𝑢 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,10)). For the forest variable, I substituted each of 

the nine sampling extents in turn to identify the most informative scales for each species.  As 

these candidate models were structurally the same, I compared models using the deviance 

information criterion, DIC (Spiegelhalter et al. 2002; Royle et al. 2014; Kéry and Royle 2016).  

A series of more complex models were compared to model 1 to determine whether (1) the 

effect of forest cover on 𝜓 interacted with either elevation or the human footprint variable, (2) 

the effect of forest cover was non-linear (i.e., inclusion of x + x2), or (3) a threshold response to 

forest cover was detectable.  For the latter, following Jones et al. (2011), I specified the 

threshold model as: 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑖𝑗) =  𝑢𝑖𝑚 + 𝛽1𝑖 𝑓𝑜𝑟𝑒𝑠𝑡𝑗 + 𝛽2𝑖(𝑓𝑜𝑟𝑒𝑠𝑡𝑗 − 𝑡)+ + 𝛽3𝑖 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑗 

+ 𝛽4𝑖 ℎ𝑢𝑚𝑎𝑛 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑗 Model 2 

where, t represented an unknown threshold parameter, and (forestj – t)+ = (forestj – t) if forestj 

> t, and was otherwise 0 (Jones et al. 2011). As these models were structurally different from 

Model 1, I compared models based on: (1) model convergence (non-converging models were 

not considered further), (2) credible intervals (i.e., 95% credible intervals excluding zero for the 

largest number of species retained), and (3) effect sizes.   
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Lastly, I evaluated a set of models that allowed forest cover to exert multi-scale effects on 𝜓 

either by (1) including the average amount of forest cover in the immediate 8-cell 

neighborhood surrounding each sampled unit, or (2) directly including both a fine-scale and 

broad-scale measure of forest cover (two different scales) in the same model, provided these 

two covariates were not correlated (i.e., r < 0.7, Appendix 2).  These models were compared as 

described previously. 

Prior to model fitting, all continuous covariates were centered and standardized so that the 

magnitude of their effects could be compared in the same model (Schielzeth 2010).  I 

estimated posterior distributions of parameters using Markov chain Monte Carlo (MCMC)  

implemented in a Bayesian framework using the BUGS language and run in software JAGS 

(Plummer, 2003), using the package jagsUI in R 3.6.1 (Kellner 2019; R Core Team 2019). I 

specified three chains, 30000 iterations (burn-in of 5000 iterations), and a thinning rate of 20. 

For priors, I used a normal distribution having mean 0 and standard deviation 100 on the logit-

scale for all covariate effects (𝛽1𝑖, 𝛽2𝑖, 𝑒𝑡𝑐) and a uniform distribution from 0 to 10 for 𝜎 

parameters. I assessed convergence using the Gelman-Rubin statistic where values <1.1 

indicated convergence (Kéry 2010). 

COMMUNITY-LEVEL SUMMARIES 

From the best model(s), I calculated relative species richness across the area of study by 

summing the predicted probabilities of use across species (Calabrese et al., 2014), such that 

theoretical maximum number of medium or large-sized mammal species at any given location 

(28) would be achieved should each be predicted to have probability of use = 1.00 within a 

given sampling extent. 
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Ultimately, I plotted the predicted probability of use for each species against proportion forest 

cover to search for a critical point at which community composition may shift away from being 

dominated by forest-dependent species. Such critical points were found as the intersections of 

the predicted probability of use of generalist species (those responding negatively to forest 

amount) and forest-dependent species (positive response to forest amount). 

RESULTS 

A total of 2,802 detections of 28 mammal species were recorded.  The most detected species 

were the big-eared opossum Didelphis aurita (N=625) and crab-eating fox Cerdocyon thous 

(N=216; Figure 2), while the least detected species included the six-banded armadillo 

Euphractus sexcinctus (N=1) and striped hog-nose skunk Conepatus semistriatus (N=2). Both 

covariates included for detection probability proved informative for many species (12 species 

showed significant responses to the trail covariate, and 17 for the camera trap effort). Seven 

species exhibited greater detection probability when cameras were placed on trails (T. pecari, 

P. concolor, L. pardalis, L. guttulus, C. thous, C. brachyurus, and S. minensis), while five species 

exhibited greater detection probabilities off trail (G. brasiliensis, D. tajacu, Eira barbara, 

Procyon cancrivorus, and Mazama spp.; Appendix 3). When considering the sampling effort 

covariate, most species exhibited a result that might be counter-intuitive, they had reduced 

detection probability with increased sampling effort (T. terrestris, C. paca, E. barbara, D. 

tajacu, T. pecari, L. guttulus, P. cancrivorus, Didelphis aurita, Nasua nasua, Dasypus spp., 

Cabassous spp., Mazama spp., S. minensis, and H. hydrochaeris). Three species showed 

increased detection probabilities with increasing sampling effort: P. concolor, L. pardalis, and 

C. thous (Appendix 3). This could be related to the fact that a very large landscape was 

sampled (~66,870 km2) following a gradient of forest cover, elevation, and the human 

footprint variable, where species might be heterogeneously distributed  (Rosenzweig 1995), 
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being more common in some parts of the sampled area than others, which could lead to a 

negative relationship between detection probability and sampling effort whether areas not 

used by the species are common among the sampled sites (Tobler et al. 2008).  

The hyperparameter (community-level) means on coefficients for the effect of forest 

proportion, elevation, and human footprint on occupancy probability were very close to 0 due 

to the nearly equal number of species exhibiting opposite directionality (+/-) in their responses 

to these factors (Appendix 3). The threshold model (Model 2) failed to converge for many 

parameters and was not considered further. The simplest models, i.e., linear model, 

interaction models, and non-linear forest variable, each achieved convergence at all sampling 

extents. The simple linear model (Model 1) yielded informative parameter estimates, i.e., 95% 

credible intervals excluded zero, for 3 to 11 species depending on the sampling extent 

considered (Table 2; Appendix 3). Interaction terms proved uninformative (95% credible 

intervals overlapped zero) for all species and extents, with a few exceptions (D. aurita, 2 

extents, Mazama spp. and agouti D. iacki, 1 extent each), and were not considered further. 

Likewise, adding a quadratic term for forest cover did not prove informative, so this model was 

also not considered further.  

An 8-km sampling extent for forest amount yielded informative parameter estimates for the 

largest number of species (13 species), followed by the 2-, 15-, and 30-km extents (nine species 

each; Table 2). Notably, the extreme scales (0.25- and 60-km) yielded informative estimates for 

the fewest species. When comparing models using DIC, the 2-km extent was identified as the 

best fit overall for this mammal community (∆𝐷𝐼𝐶 > 60 for all other extents; Table 3), 

coinciding with the largest effect sizes. In choosing a larger extent to include as a landscape 

context variable, the 30-km extent received more support than the 60-km extent (∆𝐷𝐼𝐶 > 

100).  
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In the neighborhood-based model, given a larger proportion of forest in the neighboring grid 

cells, locally some species increased their probability of use (D. iacki, D. tajacu, T. terrestris, T. 

pecari, P. onca, L. pardalis, and P. concolor) while others decreased their use (Dasypus spp., C. 

thous, and Myrmecophaga tridactyla). The alternative, multi-scale model included forest cover 

measured within both 2-km and 30-km sampling extents. This model converged for 

parameters at both extents and yielded informative parameter estimates for most species 

(except Dasypus spp. and C. thous). This multi-scale model yielded the largest number of 

informative parameters estimates at the 2-km extent (9). The direction of slopes was the same 

as the single scale (2-km extent) model, but effect sizes were lower than those obtained using 

Model 1. Additionally, comparing models using DIC, Model 1 appeared the best fit overall for 

this mammal community compared to the multi-scale models (∆𝐷𝐼𝐶 > 110). Therefore, all 

results below are reported using Model 1 at the best extent for forest amount, i.e., 2x2 km. 

COMMUNITY-LEVEL SUMMARIES 

Carnivores such as jaguarundi Herpailurus yagouaroundi (mean probability of use = 0.59, 95% 

CI: 0.19-0.99), and omnivores such as opossum D. aurita (0.55, 0.44-0.66) and tayra E. barbara 

(0.50, 0.31-0.74), were predicted to be the most common species throughout the study area 

(Figure 2B). On the other hand, frugivores were the rarest trophic guild, with at least three 

species exhibiting probability of use smaller than 10% considering all sampled sites: D.iacki 

(mean probability of use = 0.04, 95% CI: 0.01-0.09), T. pecari (0.07, 0.03-0.13), and T. terrestris 

(0.09, 0.04-0.15). Some species across various trophic guilds (carnivore, omnivore, and 

herbivores) were also rare in this landscape: e.g., P. onca (mean probability of use = 0.02, 95% 

CI = 0.01-0.07), C. brachyurus (0.04, 0.01-0.10), H. hydrochaeris (0.10, 0.04-0.20), and S. 

minensis (0.09, 0.05-0.17). 
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Based on Model 1 fit at a 2-km sampling extent, the average number of species predicted at a 

site was 7 (Figure 3).  Sites included 2-4 carnivores, 1-3 omnivores, and 1-2 insectivores on 

average, and generally lacked frugivores or herbivores (Figure 3). Overall, when considering 

the whole mammal community, there was an apparent increase in predicted species richness 

with increasing forest amount (Figure 4).  However, the predicted richness of carnivores and 

frugivores suggested a positive relationship, while the richness of insectivores and herbivores a 

suggested a negative relationship with increasing forest amount. In general, survey units 

hosting the highest forest amount in the landscape were predicted to have the highest relative 

species richness (Figure 5). Similarly, most species (up to 17) exhibited increased occupancy 

probability in areas of high forest amount (Table 2).  

The differential responses to forest cover between forest-dependent species (those exhibiting 

a significant positive association with forest cover) and more generalist species (those 

exhibiting either a negative or neutral response to forest cover revealed critical points at which 

community shifts might be expected (Figure 6). Importantly, the value for the critical forest 

amount declined as a non-linear function of the observation (Figure 7), increasing from 45% 

forest cover at the coarsest sampling extent (60-km) to 87% forest cover at the finest sampling 

extent (0.5-km).  Given my selection of 2-km as the ‘optimal’ scale for quantifying forest 

responses in this mammalian community, prediction plots indicated a threshold amount of 

78.26% forest (varying from 76.71 to 79.85% for species that yielded informative parameter 

estimates at this extent; Figures 7, Appendix 4) being required to maintain the suite of forest-

dependent mammals in this area.  The human footprint covariate was informative (and 

positive) only for Mazama spp. (Appendix 3), whereas more species presented meaningful 

relationships with elevation, either positive (D. tajacu, and T. pecari), or negative (D. iacki, D. 

aurita, and Dasypus spp.; Appendix 3). 
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DISCUSSION 

This work clearly demonstrated the challenges of looking for ecological thresholds when 

considering community responses to habitat fragmentation.  Species varied in their use of 

space with respect to forest amount, with different groups showing constrasting directional 

relationships with changes in forest cover, and with some species but not the overall 

community exhibiting statistically non-linear, interactive, or even multi-scale responses.  

Failing to statistically detect a community-level threshold in forest amount, I instead found 

individual species responses useful in identifying putative critical points beyond which forest 

specialists would become less likely (≤0.5 probability) than generalist or more open-habitat 

species (≥0.5 probability) to occur.  Importantly, the amount of forest corresponding to that 

putative critical point variedly widely, from 45-87%, depending upon the scale of observation, 

or more specifically the extent within which the proportional coverage of forest was 

calculated.  Ultimately, the best supported scale of observation for this Atlantic Forest 

mammalian community was a 2x2 km landscape cell, which corresponded to a critical point at 

~78% forest cover.  This indicated that even for landscape units largely dominated by forest we 

may expect a shift favoring generalists over forest specialists in this human-dominated region.  

Notably, this critical point is considerably higher than forest cover thresholds reported 

elsewhere, which more typically have been observed ~10-30% forest cover (Andrén 1994; 

Banks-Leite et al. 2014; Lima and Mariano-Neto 2014; Boesing et al. 2017; Leite et al. 2018).  

However, our observation is consistent with the higher forest cover thresholds estimated 

elsewhere in the tropics (up to 75%; (Arroyo-Rodríguez et al., 2020; Morante-filho et al., 2015; 

Rigueira et al., 2013; Saetersdal et al., 1993; Soulé and Sanjayan, 1998), possibly due to higher 

turnover rates among areas in the tropics (Solar et al. 2015; Arroyo-Rodríguez et al. 2020).  As 

a result, considerably greater amounts of forest than previously considered may be needed to 

maintain forest-dependent mammals in this region.   
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A systematic shift in biodiversity has been observed worldwide in the so-called Anthropocene 

(Dornelas et al. 2014; Daskalova et al. 2020). My data indicate a decrease in both species 

richness (𝛼 diversity) at local sites (i.e., the maximum estimated number of species at a given 

site was 18 out of 28 species) and 𝛽 diversity (species turnover) between landscapes with less 

or more than 78% forest cover (with generalist species having higher probability of use of 

areas with less than 78% forest and forest-dependent species using more commonly areas 

with more than 78% forest cover). Species turnover is defined as the rate or magnitude of 

change in species composition along predefined spatial or environmental gradients, meaning 

that turnover occurs when a species present at a given site is absent from another site, where 

it is replaced by another species that was absent from the first (Vellend 2001; Beca et al. 

2017). Interpreting the potential for species turnover as differences in the probability of use by 

generalists versus forest specialists in this study, beta diversity provided a more sensitive 

indicator of potential community change than 𝛼 diversity, providing a useful metric for 

conservation planning in the region, i.e., establishment of new protected areas (Dornelas et al., 

2014; Magurran et al., 2018; Magurran and Henderson, 2010; Socolar et al., 2016).  

Importantly, the great majority of studies seeking thresholds in animal responses to declining 

forest cover tend to have investigated those thresholds using a unique, study-specific 

observation scale rather than a consistent or standardized scale of observation (Guerry and 

Hunter 2002; Imbeau and Desrochers 2002; Reunanen et al. 2004; Swift and Hannon 2010), 

which muddies comparison of ecological thresholds across studies. My results point to a 

simple, single-observation scale to effectively capture community-level responses to forest 

cover.  In particular, the 2 x 2 km scale determined as optimal for this community is the same 

scale adopted by the IUCN for species assessments (IUCN Standards and Petitions Committee 

2019), indicating broad utility for considering changing animal occurrences, and by extension 

changing communities, in response to forest amount. With respect to the 2 x 2 km scale, the 
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best-supported scale for this community, at least nine species (32% of the observed 

community) yielded informative estimates on the forest cover covariate at this scale, most 

exhibiting the largest effect sizes at this extent. Of these, three of the species were generalists, 

whereas five were forest-dependent species.  The appropriate scale of observation may vary 

depending upon species (Wintle et al. 2005; Kennerley et al. 2019; Semper-Pascual et al. 

2020), or species assemblage when looking at communities, and the general applicability of 

the 2x2 km scale will require additional multi-scale investigations like that conducted herein.     

The long history of destruction of the Atlantic Forest combined with the concentration of over 

70% of the Brazilian population within the limits of the biome (IBGE 2014) has led to a very 

fragmented forest, with most of the remaining fragments being small  (<100 ha) and isolated, 

and with few contiguous forested areas (Ribeiro et al. 2009). The temporal lag between forest 

loss and population or assemblage-level shifts can extend up to 50 years depending on species’ 

generation time (Daskalova et al. 2020).  Given major forest deforestation in the early 20th 

century within my study area (Viana et al. 1997), I presume contemporary species patterns as 

observed in this study reflect the new equilibrium in this fragmented landscape. The most 

common species observed were big-eared opossum (D. aurita), grison (G. cuja), tayra (E. 

barbara), and jaguarundi (H. yagouaroundi) – the first two being generalist species (Emmons 

and Feer 1999; Cáceres 2004; Rodrigues et al. 2013). Notably, jaguarundi was known to occur 

in low densities and to rarely be more abundant than other felids (de Oliveira et al. 2010; 

Almeida et al. 2013). Several species proved very rare in this landscape, occurring in less than 

15% of the study area, and representing four out of five trophic guilds:  P. onca (carnivore), D. 

iacki, T. terrestris, and T. pecari (frugivores), C. brachyurus (omnivore), along with H. 

hydrochaeris, and S. minensis (herbivores). For many of those species (i.e., tapir, white-lipped 

peccary, and jaguar), rarity is the most common observation across the whole biome (Jorge et 

al. 2013; Bogoni et al. 2018). I found tapirs to be absent from 91% (85-96%) and white-lipped 
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peccaries from 93% (87-97%) of the area of study, whereas the jaguar, the rarest species in this 

study, was absent from 98% (93-99%) of the landscape. Some rare species such as maned wolf 

and Brazilian cottontail prefer more open vegetation types while others such as capybara, 

which are common elsewhere in the biome but rare in this study area, require close proximity 

to water bodies (Ferraz et al. 2007; Ferraz et al. 2009; Queirolo et al. 2011; Bonvicino et al. 

2015; de Paula 2016; Ferreguetti et al. 2017; Dias et al. 2019; Ruedas and Smith 2019). 

Previous studies point to frugivores and carnivores as the trophic guilds most threatened by 

forest loss (Estes et al. 2011; W. J. Ripple et al. 2014; Ripple et al. 2015; Johnson et al. 2017; 

Magioli et al. 2021), as higher extinction risk is often related to larger body mass for mammals 

(Ripple et al. 2017). At 2x2 km landscape units containing <78% forest cover, I expect 

diminished probability of occurrence for three frugivores (tapir, collared-peccary, and white-

lipped peccary), one omnivore (tayra), and two carnivores (puma and ocelot). The absence of 

frugivores is expected to have cascading ecological effects, since more than 80% of the trees in 

the Atlantic Forest are zoochoric, with 20-46% being dispersed by mammals (Almeida-Neto et 

al. 2008). Many large-seeded plants (i.e., palms) rely on a few, larger-bodied frugivores for 

seed dispersal—exactly those species that have already been eliminated from most parts of 

the landscape. In some cases, smaller species like squirrels Guerlinguetus sp. and spiny rats 

(Family Echimyidae) might act as dispersers in otherwise defaunated areas (Bonjorne de 

Almeida and Galetti 2007), but they cannot replace the long-distance dispersal provided by the 

larger frugivores, and even with their dispersal services the proportion of undispersed seeds 

remains very high with most seeds destroyed by insects (Galetti et al. 2006). Consequently, the 

distribution of many woody species is altered, and their gene flow compromised, following the 

loss of key frugivores. Likewise, the loss of the jaguar from a great part of the studied region 

also contributes to cascading effects throughout the community (Ripple and Beschta 2006; 

Bruno and Cardinale 2008; Beschta and Ripple 2009; Ripple and Beschta 2012). Pumas, being 



101 

 

more tolerant of anthropogenic environments than jaguar, were predicted to occur across 28-

59% of the study landscape and appear less likely to suffer local extinctions (Crawshaw and 

Quigley 2002; Foster et al. 2010; De Angelo et al. 2011; de la Torre et al. 2017).  Despite the 

retention of a major predator across the region, puma use of habitats and food items differs 

from jaguar (Crawshaw and Quigley 2002), so they are not expected to compensate entirely 

for the loss of jaguars. It is important to note that the landscape conditions that support both 

apex predators, represented by areas with high proportion of forest (usually > 78%), are 

already rare in the landscape (~23.7% of the 2x2 km grid cells meet this condition). 

With the predominance of small and isolated forest remnants across the Atlantic Forest biome 

(Ribeiro et al. 2009), an integration of scientists, policy makers, and stakeholders is urgently 

needed (Joly et al. 2019) to conserve the more threatened mammals in the biome, those 

important for different ecosystem services. One initiative that has been started in a few 

regions within the Atlantic Forest is payment for ecosystem services, which has yielded a small 

incremental increase in forest amount through forest regeneration on participating properties 

(Ruggiero et al. 2019). However, equally or more important as increasing forest amount is the 

conservation of existing old-growth forest fragments and increasing forest quality to satisfy 

many ecosystem services demands (Ferraz et al. 2014) and given their importance to many 

species, especially forest specialists (Acevedo-Charry and Aide 2019). Despite the importance 

of old growth forests, the tendency in the Atlantic Forest since 1990 is to lose old growth 

forests and gain younger native forest cover (Rosa et al. 2021).  Even if restoring forest within a 

rather isolated 2x2 km landscape unit would not necessarily increase the amount of suitable 

habitat available for forest-dependent mammals, such as the jaguar or tapir, restored forest 

patches could serve as stepping stones facilitating dispersal for many species (Saura et al. 

2014; Herrera et al. 2017), increasing connectivity among the largest habitat remnants in the 
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landscape (many of them already in reserves), and benefiting gene flow for medium and large-

sized mammals across this fragmented landscape. 

Furthermore, as many mammal species have already been lost from Atlantic Forest 

landscapes, trophic rewilding may help regain ecological interactions and reverse defaunation 

and its cascading effects on ecosystem functioning (Svenning et al. 2016; Mauro Galetti, Pires, 

et al. 2017; Mauro Galetti, Root-Bernstein, et al. 2017; Root-Bernstein et al. 2017; Marjakangas 

et al. 2018). Indeed, some of the rarest species across the studied landscape and most of the 

Atlantic Forest biome (i.e., tapir, white-lipped peccary, and jaguar) appear to have more 

suitable habitats than they currently occupy within the biome, which could indicate potential 

areas that rewilding efforts could target (Jorge et al. 2013). So far, rewilding efforts have been 

made with the reintroduction of agoutis in Tijuca National Park, showing promising results for 

the restoration of ecological processes (Cid et al. 2014; Fernandez et al. 2017; Kenup et al. 

2017). Trophic rewilding and landscape planning to increase areas suitable for forest-

dependent mammals and connectivity across the landscape could have potential benefits in 

recovering many lost ecological functions in this biodiversity hotspot. 
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Table 1. Covariates’ range across the area of study. 

Covariate Resolution or grid cell 

size 

Maximum range 

for covariate 

Covariate range at 

sampled sites 

Elevation (m) 89 m  0-2397 16-2051 

Human footprint 1x1 km 0-100 15-71 

Forest amount 0.25x0.25 km 0-100 20-100 

Forest amount 0.5x0.5 km 0-100 3-100 

Forest amount 1x1 km 0-100 15-100 

Forest amount 2x2 km 0-100 7-100 

Forest amount 4x4 km 0-100 3-100 

Forest amount 8x8 km 0-100 5-100 

Forest amount 15x15 km 0-100 6-99 

Forest amount  30x30 km 0-100 14-95 

Forest amount 60x60 km 0-100 8-90 
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Table 2. Beta coefficients (SE) for the forest amount covariate at different grid cell extents from Model 1 (linear effects for all covariate). Bold values indicate 

statistically significant results (credible intervals not overlapping zero). 

Species by trophic guild 

Beta coefficients (SE) for the forest amount covariate within each sampling extent 

0.25 km 0.5 km 1 km 2 km 4 km 8 km 15 km 30 km 60 km 

Frugivores 

Cuniculus paca 0.02 (0.15) -0.01 (0.25) 0.12 (0.15) 0.09 (0.16) -0.08 (0.15) 0.08 (0.15) -0.07 (0.15) -0.08 (0.15) 0.02 (0.35) 

Dasyprocta iacki 0.27 (0.35) 0.51 (0.42) 0.33 (0.15) 0.58 (0.44) 0.36 (0.36) 1.44 (0.58) 0.56 (0.36) 0.76 (0.37) 0.85 (0.34) 

Guerlinguetus brasiliensis -0.06 (0.16) -0.09 (0.16) -0.05 (0.16) 0.03 (0.17) -0.04 (0.17) -0.07 (0.17) -0.11 (0.17) -0.15 (0.17) -0.09 (0.17) 

Dicotyles tajacu 0.45 (0.30) 0.76 (0.35) 0.74 (0.31) 1.52 (0.49) 1.41 (0.43) 1.37 (0.38) 0.70 (0.25) 0.81 (0.27) 1.09 (0.29) 

Tapirus terrestris 0.40 (0.30) 0.74 (0.37) 0.86 (0.35) 1.95 (0.61) 1.92 (0.57) 1.94 (0.51) 1.82 (0.40) 1.65 (0.39) 1.28 (0.27) 

Tayassu pecari 0.43 (0.34) 0.57 (0.36) 0.95 (0.44) 1.29 (0.56) 1.34 (0.51) 1.81 (0.57) 1.11 (0.35) 0.71 (0.32) 1.16 (0.32) 

Carnivores 

Herpailurus yagouaroundi 0.36 (0.43) 0.56 (0.49) 0.49 (0.46) 0.81 (0.68) 0.31 (0.55) 0.11 (0.84) 0.04 (0.61) -0.18 (0.54) 0.01 (0.51) 

Leopardus guttulus 0.02 (0.17) -0.19 (0.18) -0.36 (0.19) -0.26 (0.19) -0.32 (0.19) -0.33 (0.19) -0.22 (0.18) -0.19 (0.17) -0.23 (0.18) 

Leopardus pardalis 0.27 (0.17) 0.49 (0.19) 0.36 (0.17) 0.46 (0.19) 0.49 (0.18) 0.36 (0.17) 0.40 (0.17) 0.20 (0.17) 0.19 (0.18) 

Leopardus wiedii 0.13 (0.41) 0.28 (0.53) 0.40 (0.55) 1.00 (0.86) 0.69 (0.73) 0.98 (0.82) 0.20 (0.60) 0.59 (0.63) 0.87 (0.65) 
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Panthera onca 0.21 (0.17) 0.42 (0.44) 0.54 (0.46) 1.07 (0.69) 1.02 (0.61) 1.46 (0.73) 1.13 (0.52) 1.09 (0.52) 0.33 (0.38) 

Puma concolor 0.16 (0.18) 0.61 (0.23) 0.41 (0.20) 0.58 (0.23) 0.41 (0.20) 0.42 (0.20) 0.54 (0.20) 0.30 (0.19) 0.23 (0.20) 

Omnivores 

Cerdocyon thous -0.53 (0.17) -0.61 (0.16) -0.74 (0.17) -0.99 (0.20) -0.75 (0.17) -0.92 (0.18) -0.60 (0.17) -0.58 (0.17) -0.73 (0.18) 

Conepatus semistriatus 0.09 (0.39) 0.20 (0.52) 0.18 (0.51) 0.57 (0.79) 0.14 (0.17) 0.15 (0.85) -0.12 (0.63) -0.04 (0.60) 0.17 (0.61) 

Chrysocyon brachyurus -0.60 (0.23) -0.49 (0.25) -0.47 (0.26) -0.37 (0.31) -0.51 (0.31) -0.51 (0.36) -0.50 (0.35) -0.42 (0.35) -0.11 (0.33) 

Didelphis aurita 0.04 (0.13) -0.12 (0.15) -0.03 (0.14) 0.11 (0.13) -0.02 (0.14) -0.11 (0.15) -0.27 (0.14) -0.25 (0.15) -0.07 (0.14) 

Eira Barbara -0.04 (0.22) 0.24 (0.24) 0.39 (0.24) 0.57 (0.25) 0.41 (0.26) 0.31 (0.25) 0.20 (0.18) 0.03 (0.25) 0.17 (0.23) 

Galictis cuja -0.16 (0.36) -0.28 (0.44) -0.29 (0.51) -0.90 (0.76) -1.05 (0.60) -1.41 (0.72) -0.69 (0.62) -0.34 (0.59) -0.32 (0.54) 

Nasua nasua -0.08 (0.15) 0.23 (0.18) 0.14 (0.17) 0.01 (0.17) 0.02 (0,17) -0.19 (0.17) -0.04 (0.17) -0.13 (0.17) 0.03 (0.17) 

Procyon cancrivorus -0.04 (0.17) 0.14 (0.19) -0.12 (0.18) -0.17 (0.18) -0.12 (0.18) -0.32 (0.18) -0.21 (0.19) -0.20 (0.19) -0.17 (0.18) 

Insectivores 

Cabassous spp. -0.17 (0.24) -0.10 (0.25) -0.04 (0.25) -0.32 (0.28) -0.18 (0.27) -0.14 (0.28) -0.02 (0.26) 0.10 (0.26) 0.02 (0.26) 

Dasypus spp. -0.39 (0.15) -0.73 (0.17) -0.64 (0.16) -0.79 (0.17) -0.77 (0.16) -0.63 (0.16) -0.77 (0.17) -0.52 (0.15) -0.43 (0.15) 

Euphractus sexcinctus 0.05 (0.39) 0.21 (0.51) 0.18 (0.54) 0.49 (0.84) 0.22 (0.77) 0.06 (0.92) -0.28 (0.69) -0.16 (0.65) 0.06 (0.64) 

Myrmecophaga tridactyla -0.15 (0.36) -0.37 (0.44) -0.32 (0.48) -0.73 (0.76) -0.64 (0.64) -1.38 (0.70) -1.02 (0.64) -1.14 (0.57) -1.36 (0.57) 
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Tamandua tetradactyla 0.26 (0.36) 0.23 (0.40) -0.01 (0.35) 0.30 (0.47) 0.27 (0.42) 0.42 (0.47) 0.01 (0.38) 0.14 (0.36) 0.02 (0.35) 

Herbivores 

Hydrochoerus hydrochaeris -0.08 (0.21) 0.07 (0.25) -0.02 (0.24) -0.37 (0.24) -0.33 (0.23) -0.41 (0.26) -0.70 (0.30) -0.43 (0.26) -0.33 (0.26) 

Mazama spp. -0.15 (0.14) -0.18 (0.15) -0.16 (0.15) -0.41 (0.15) -0.35 (0.16) -0.25 (0.16) -0.06 (0.30) -0.08 (0.17) -0.24 (0.17) 

Sylvilagus minensis -0.22 (0.16) -0.10 (0.19) -0.08 (0.20) -0.21 (0.20) -0.10 (0.21) -0.20 (0.21) -0.11 (0.21) -0.44 (0.23) -0.39 (0.23) 
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Table 3. Deviance Information Criterion (DIC) considering Model 1 at nine grid cell extents for 

the forest amount covariate, multiscale Model 6 (neighborhood) at both fine- and broad-

extents, and multiscale Model 7 including both a fine- (2x2 km) and broad-extent (30x30 km). 

Model Grid-cell extent for forest amount DIC ∆𝐷𝐼𝐶 

Model 1 2x2 km 16628.63 0 

Model 1 8x8 km 16689.43 60.8 

Model 6 2x2 km + neighboring forest index at 2x2 km 16738.76 110.13 

Model 1 0.5x0.5 km 16746.05 117.42 

Model 1 1x1 km 16753.75 125.12 

Model 1 0.25x0.25 km 16758.82 130.19 

Model 7 2x2 km + 30x30 km 16788.11 159.48 

Model 1 30x30 km 16792.54 163.91 

Model 1 4x4 km 16806.69 178.06 

Model 6 30x30 km + neighboring forest index at 30x30km 16812.02 183.39 

Model 1 15x15 km 16883.76 255.13 

Model 1 60x60 km 16898.30 269.67 
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Figure 1. Location of study area in Brazil (top left), 30 by 30 km sampling units (top right), and 

camera traps (top right and insets).  Different symbols represent different deployment 

windows for camera traps. Insets show variation in total amount of forest cover across sample 

units. 
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Figure 2. Number of detections by species (A) within the Atlantic Forest sites, along with the predicted mean 

probability of use in sampled sites (B) and detection probability (C). Fru = frugivore, Car = carnivore, Omn = 

omnivore, Ins = insectivore, and Her = herbivore. The results shown use Model 1 at the best overall extent 

for the forest amount covariate (i.e., 2x2 km). 



110 

 

 

Figure 3. Frequency of predicted species richness observed within Atlantic Forest sites, 

considering a 2 x 2 km sampling extent.  Results are shown for the entire mammal community 

(top left) as well as for individual trophic guilds. 
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Figure 4. Estimated mammal species and trophic guild species richness across a gradient of 

forest amount at sampled sites. Box and whiskers-plot indicate median, lower and upper 

quantiles, minimum, and maximum values. 
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Figure 5. Relative species richness calculated by summing species’ probabilities of use (Model 

1) across the forest remnants in the study area at the best extent (2x2 km) for the medium and 

large-sized mammal community (28 species) in an Atlantic Forest human-dominated 

landscape. 
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Figure 6. Prediction plots for the probability of use (𝜓) for mammals showing significant 

positive and negative relationships with forest amount in the landscape. Each plot (A-I) depicts 

the partial slope for forest amount fit at different sampling extents (0.25x, 0.5, 1, 2, 4, 8, 15, 

30, and 60 km). All plots were derived from the linear model (Model 1), except for Sylvilagus 

minensis at the 30 km extent, for which the nonlinear (quadratic) model (Model 2) was best.  

Critical points were identified where the probability of use was equal between forest-

dependent (+ slopes) and generalist- or open-habitat species (- slopes). 
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Figure 7. Critical (threshold) points at different grid cell extents for the forest amount covariate 

(from 0.5 km to 60 km) indicating the forest proportion at which a shift in the mammal 

community might be expected, i.e., where forest-dependent species have equally as high a 

probability of use as generalist- or open habitat-species. 
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Appendix 1. Species included in multi-species multi-session occupancy models, total number of 

detections for 7 days-pooled data, and naïve occupancy for four camera trap sessions (275 

sites) in a human-dominated Atlantic Forest landscape in Southeastern Brazil. Car = carnivore, 

Fru = frugivore, Her = herbivore, Ins = insectivore, Omn = omnivore. 

Species Common name Trophic 

guild 

Detections 

(N) 

Naïve Occupancy 

Cabassous spp.  Naked-tailed 

armadillo 

Ins 48 0.13 

Cerdocyon thous Crab-eating fox Omn 216 0.25 

Chrysocyon brachyurus Maned wolf Omn 24 0.03 

Conepatus semistriatus Striped Hog-nosed 

skunk 

Omn 2 0.01 

Cuniculus paca Paca Fru 201 0.23 

Dasyprocta iacki Agouti Fru 25 0.03 

Dasypus spp. Nine-banded or 

seven-banded 

armadillo 

Ins 205 0.30 

Dicotyles tajacu Collared peccary Fru 50 0.11 

Didelphis aurita Big-eared 

opossum 

Omn 625 0.52 

Eira Barbara Tayra Omn 86 0.22 

Euphractus sexcinctus Six-banded 

armadillo 

Ins 1 0.01 

Herpailurus yaguaroundi Jaguarundi Car 22 0.08 
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Galictis cuja Lesser grison Omn 9 0.03 

Guerlinguetus brasiliensis Squirrel Fru 119 0.18 

Hydrochoerus hydrochaeris Capybara Her 32 0.06 

Leopardus guttulus Oncilla Car 147 0.29 

Leopardus pardalis Ocelot Car 176 0.30 

Leopardus wiedii Margay Car 5 0.02 

Mazama spp. Brocked deer Her 156 0.20 

Myrmecophaga tridactyla  Ins 5 0.02 

Nasua nasua Coati Omn 107 0.19 

Panthera onca Jaguar  11 0.01 

Puma concolor Cougar Car 179 0.25 

Procyon cancrivorus Crab-eating 

raccoon 

Omn 103 0.13 

Sylvilagus sp. Brazilian cottontail Her 93 0.09 

Tapirus terrestris Tapir Fru 79 0.08 

Tayassu pecari White-lipped 

peccary 

Fru 67 0.07 

Tamandua tetradactyla Collared Anteater Ins 9 0.03 
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Appendix 2. Correlation matrix among covariates used in multi-scale multi-species occupancy models. Values in bold indicate statistically significant 

relationship (P < 0.05). 

 

Elevation 

 

Human footprint 

 

Forest 

(0.25 km) 

 

Forest 

(0.5 km) 

 

Forest 

(1 km) 

 

Forest 

(2km) 

 

Forest 

(4 km) 

 

Forest 

(8 km) 

 

Forest 

(15 km) 

 

Forest 

(30 km) 

 

Forest 

(60 km) 

 
Elevation 1.00                     

Human footprint -0.40 1.00                   

Forest (0.25 km) 0.04 -0.09 1.00                 

Forest (0.5 km) 0.06 -0.07 0.71 1.00               

Forest (1 km) 0.12 -0.02 0.68 0.74 1.00             

Forest (2 km) 0.16 -0.20 0.55 0.69 0.76 1.00           

Forest (4 km) 0.16 -0.28 0.48 0.59 0.66 0.82 1.00         

Forest (8 km) 0.17 -0.24 0.39 0.55 0.54 0.71 0.73 1.00       

Forest (15 km) 0.11 -0.28 0.39 0.46 0.50 0.56 0.61 0.78 1.00     

Forest (30 km) 0.10 -0.30 0.31 0.40 0.38 0.48 0.53 0.85 0.85 1.00   
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Forest (60 km) 0.08 -0.09 0.29 0.38 0.37 0.44 0.49 0.75 0.80 0.72 1.00 
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Appendix 3. Beta coefficients for covariates influencing the probabilities of use and detection 

of mammals across a human dominated Atlantic Forest landscape for Model 1 at the best 

extent, 2x2 km. 
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Appendix 4. Prediction maps for 28 mammal species using parameter estimates obtained from 

Model 1 at 2x2 km extent for forest amount at a human-modified Atlantic Forest landscape, 

southeastern Brazil. 
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CHAPTER 4 - EVALUATING MULTISPECIES CONNECTIVITY IN A HUMAN-DOMINATED LANDSCAPE IN THE 

ATLANTIC FOREST, SOUTHEASTERN BRAZIL 

ABSTRACT 

With more than 75% of ecosystems worldwide having suffered human modification, besides 

setting aside protected areas for biodiversity conservation, it is also crucial to focus on 

connectivity to maintain the existent metapopulations in human-dominated landscapes. This 

chapter involves a multi-species and multi-scale evaluation of habitat connectivity for forest-

dependent medium- to large-bodied mammals occupying a gradient of habitat fragmentation 

within the Atlantic Forest. The most vulnerable mammal species to further habitat loss 

identified in chapter 3 were selected for the connectivity analysis using a graph-theoretic 

approach to measure network connectivity among core habitat patches for each target 

species. I validated model predictions from a multi-scale multi-species occupancy model 

(chapter 3) to identify areas of high habitat suitability, which were retained to identify core 

habitat patches for the connectivity analyses. I evaluated the contribution of each node to 

overall connectivity for each species by systematically removing each node in turn and 

quantifying its’ individual impact in terms of the full network. Considering the value of 

protected areas in ensuring multispecies connectivity in this region, one third of the most 

important nodes for connectivity fell outside any protected area designation. Carnivores and 

frugivores shared 68.59-86.21% of the most important nodes, which indicates that relying on 

one species does not represent well what each species needs individually, given their 

divergent distribution across landscape and anthropogenic gradients. This study provided the 

identification of key areas to maintain the connectivity under existing habitat conditions for a 

suite of forest-dependent mammals in the human-dominated, Brazilian Atlantic Forest.  
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INTRODUCTION 

Ongoing intensification of human activities remains an existential threat to species persistence 

(Doak et al. 1992; Goodwin and Fahrig 2002), with less than 25% of ecosystems world-wide 

being considered “free” from anthropogenic modification (Parrish et al. 2003; Grantham et al. 

2020). Setting aside protected areas remains a primary tool for stemming the tide of 

biodiversity losses (Geldmann et al. 2013; Le Saout et al. 2013; Gray et al. 2016), and the 

Convention on Biological Diversity set a target for 17% of the earth’s surface to be covered by 

“effectively and equitably managed, ecologically representative and well connected” protected 

areas by 2020 (CBD 2010). As of 2018, terrestrial coverage of protected areas reached 14.9% 

(Belle et al. 2018), yet only 9.3-11.7% of the existing protected areas was considered 

connected based on dispersal distances for most terrestrial vertebrates (Saura et al. 2017; 

Ward et al. 2020). Enhancing the movement potential of species among protected areas 

remains critically important to ensure effectiveness of the world’s protected area network 

(Secretariat of the Convention on Biological Diversity 2005). 

Measures of connectivity attempt to quantify the degree to which landscapes facilitate or 

impede the flow of individuals among patches of suitable habitat (Taylor et al. 1993), an 

important evaluation given that connectivity plays an important role in maintaining viable 

populations for many wide-ranging species Funcitonal connectivity, which represents the 

behavioral responses of individuals, species or ecological processes to landscape structure 

(Crooks and Sanjavan 2006), relates to how organisms move through a landscape in relation to 

both the structural connectivity of the landscape (spatial arrangement of different types of 

habitats) and the organisms’ biological characteristics, e.g., movement constraints (Paquet et 

al., 2006). Functional connectivity influences individual survival and reproduction, population 

dynamics and persistence, gene flow and genetic diversification of populations, and predator-
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prey dynamics (Wiens 2006). In this sense, the isolation of populations may lead to a loss of 

genetic diversity, and inbreeding in the short term, which in the long term could jeopardize 

species adaptation and evolution to changing environmental conditions (Crooks and Sanjavan 

2006).  

Network analysis is a key approach to evaluating functional connectivity, more specifically 

potential connectivity, based on the organism’s dispersal ability (Fagan and Calabrese 2006). 

Graph-theoretic approaches have been largely used to measure network connectivity, helping 

guide decisions about the relative importance of individual patches to overall landscape 

connectivity (Urban and Keitt 2001; Urban et al. 2009). By removing each habitat patch in turn, 

graph-theoretic approaches have the advantage of identifying which of the existing habitat 

patches contribute the most to upholding species dispersal and other ecological flows in a 

landscape context (Saura and Pascual-Hortal 2007). Other approaches, such as least-cost path 

analyses, focus on identifying direct linkages among specific habitat patches (e.g., protected 

areas), but it remains unclear how effective protecting a single least-cost path between a pair 

of patches would be in providing functional connectivity across the landscape (Cushman and 

Landguth 2012). 

Many studies have focused on evaluating connectivity only among protected areas, assuming 

that the species of interest would be present within such areas (Pinto and Keitt 2009; Minor 

and Lookingbill 2010; Wegmann et al. 2014; Castilho et al. 2015). Yet, by assuming protected 

areas to be suitable and occupied habitat while the rest of the landscape is “matrix” risks 

overlooking patches that are not just “corridor habitat”, i.e., that facilitate movement, but 

serve as core habitat, i.e., contributing to population residency.  As a result, consideration of 

connectivity among protected areas only may fail to recognize the critical contributions of 

patches of unprotected habitat (Ashrafzadeh et al. 2020). Moreover, protected areas may lack 
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the species of interest or even represent sink conditions, and ensuring connectivity among sink 

populations alone could compromise metapopulation persistence (Taylor et al. 1993). Viewing 

the landscape as a gradient of varying habitat suitability should provide a richer consideration 

of landscape connectivity than the traditional patch-corridor view based solely on protected 

areas as patches. 

Another core consideration for connectivity studies is the choice of study species.  Although 

the majority of connectivity studies have focused on large-bodied, wide-ranging, or so-called 

“umbrella” species (Noss 1990; Beier 1993; Rabinowitz and Zeller 2010; Castilho et al. 2015; 

Keeley et al. 2017; Pitman et al. 2017), recognition that what may facilitate movement for 

some species may filter the movements of others (Lomolino et al. 2017) calls for multispecies 

assessments (Cushman and Landguth 2012; Lechner et al. 2017; Liu et al. 2018; Ashrafzadeh et 

al. 2020; Brennan et al. 2020; Fedorca et al. 2020). Moreover, the varying ecological responses 

of each species to landscape variables (e.g., human disturbances, fragmentation, elevation), 

and at different scales leads to different core habitat areas or patches for different species 

(Blazquez-Cabrera et al. 2014; Ashrafzadeh et al. 2020; Brennan et al. 2020; Pliscoff et al. 

2020). Therefore, limiting a connectivity analysis to a single species or definition for what 

constitutes habitat, e.g., protected areas only, will invariably fail to represent the conservation 

needs of the larger community (Cushman and Landguth 2012; Brennan et al. 2020). Moreover, 

biological characteristics of a species (i.e., dispersal ability) highly influences apparent levels of 

connectivity, with the degree of connectivity decreasing when shorter potential dispersal 

distances are considered (Cushman and Landguth 2012).  Where protecting regional 

biodiversity is the goal, connectivity studies should involve multiple species having different 

life history requirements, movement propensities, and sensitivity to human activities (Brodie 

et al. 2015; Ersoy et al. 2019). 
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This study involves a multi-species and multi-scale evaluation of habitat connectivity for forest-

dependent medium- to large-bodied mammals occupying a gradient of habitat fragmentation 

within the Atlantic Forest, São Paulo and Minas Gerais states, Brazil.  My specific objectives 

were to 1) compare connectivity measures among species with different body sizes and life 

history traits (e.g., frugivores versus carnivores), 2) evaluate the connectivity value of different 

levels of land protection in this region—from strictly protected “park” areas to multiple use 

landscapes, and 3) identify critical gaps in the protected area network with respect to areas of 

high connectivity importance.  Given these objectives I defined habitat patches following a 

gradient model, using species-specific predictions of site occupancy across the region 

(Bonjorne de Almeida Chapter 3) rather than simply focusing on connections among existing 

protected areas.        

METHODS 

MODELING HABITAT FOR FOREST-DEPENDENT SPECIES 

As only 12% of the original Atlantic Forest remains, in fragmented, mostly small, and isolated 

patches, I chose to focus my assessment for community connectivity on forest-dependent 

mammals.  I identified forest-dependent species as those having a positive association 

between forest amount and the probability of site use in a previous analysis (Bonjorne de 

Almeida Chapter 3)—yielding eight species that included four carnivores (Eira barbara, 

Leopardus pardalis, Panthera onca, and Puma concolor) and four frugivores (Dasyprocta iacki, 

Dicotyles tajacu, Tapirus terrestris, and Tayassu pecari).  Of the selected species, four were 

listed in the Brazilian red list of threatened species (T. terrestris, T. pecari, P. onca, and P. 

concolor; (MMA, 2014), and two were considered threatened at the state level (L. pardalis and 

D. tajacu; (COPAM, 2010; São Paulo, 2018).   
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Using the same data and approach described in Chapter 3, I refit to these eight species alone a 

multi-species, multi-session hierarchical occupancy model, using a 2x2 km sampling unit to 

quantify proportion forest cover, and including linear covariate effects as: 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑖𝑗) =  𝑢𝑖𝑚 + 𝛽1𝑖 𝑓𝑜𝑟𝑒𝑠𝑡𝑗 + 𝛽2𝑖 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑗 + 𝛽3𝑖 ℎ𝑢𝑚𝑎𝑛 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑗, 

where 𝑢𝑖𝑚 represented random intercepts for each species i and session m, and followed a 

normal distribution with the means and variances governed by the community 

hyperparameters (i.e., 𝑢𝑖𝑚 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑢, 𝜎𝑢
2), 𝜎𝑢 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,10)).  Forest cover was 

mapped using Landsat 7 images at 30 m resolution (MMA/PROBIO, 2007). I included two 

additional site-specific metrics thought to influence species distribution across the region – 

human disturbance and elevation.  For the former, I used the human footprint index produced 

by (Venter et al., 2016), whose values range 0-100 and were derived from a combination of 

human population density, human land use and infrastructure, and human access (mapped at 

a 1-km resolution).  Lastly, the elevation of each camera site was recorded using Shuttle Radar 

Topography Mission (SRTM) data at 89 m resolution (Weber et al., 2004).  

To identify core habitat patches, I applied this model to landscape covariates to predict the 

probability of site use, 𝜓, for each species within each 2-km cell across the study area.  Prior to 

defining high quality habitat patches, I validated model predictions using a sample of 306 

independent, out-of-sample records of species occurrence drawn from the literature (Lima et 

al., 2017; Nagy-Reis et al., 2020; Souza et al., 2019). I retained only species records collected 

since the year 2000, that were directly collected by researchers (e.g., camera traps, footprints, 

line transects), and that had high specificity in terms of the location of the observation 

(reported as having high precision).  Following Boyce et al. (2002), for each species I rescaled 

predicted 𝜓 values to sum to 1 across the study region (Gould et al. 2019) and then grouped 



131 

 

the resulting values into 10 “equal area” bins such that each bin represented 10% of the 

landscape rather than 10% of the range of predicted values.  Within each bin, i, I quantified: 

𝑃(𝑢𝑠𝑒)𝑖 = ∑�̂�𝑗

𝑁

𝑗=1

 

where �̂�𝑗 is the estimated probability of habitat use for grid cell j (Boyce et al. 2002; Howlin et 

al. 2003; Gould et al. 2019). The proportion of out-of-sample occurrences within each bin i was 

then calculated as: 

𝑂(𝑢𝑠𝑒)𝑖 = ∑
𝑟𝑖𝑗

𝑟

𝑁

𝑗=1

 

where 𝑟𝑖𝑗 is an observed point of occurrence within bin i and grid cell j obtained from the 

literature or unpublished data and r is the total number of observed occurrences considering 

all bins. I then assessed the correlation between predicted and observed habitat use for each 

species by conducting a Spearman’s rank correlation test, where 𝜌 ≥ 0.60 indicates a positive 

correlation (Boyce et al. 2002). Because of the lack of independent points to validate 

occurrence of D. iacki (N=12) and P. onca (N=3), these species were not included in subsequent 

analyses.  

Following validation, I identified high versus low habitat suitability based on the observed 

levels of use from the out-of-sample data. Having previously grouped predicted probabilities of 

use into 10 equal-area bins, one would expect 10% of the observed points to fall into each bin 

by random chance alone.  Therefore, O(use) < 0.1 indicates disproportionately lower use than 

expected (poor suitability) while O(use) > 0.1 indicates use disproportionately greater than 

expected (high suitability). For each species, areas of high habitat suitability were retained to 

identify core habitat patches for the connectivity analyses. If a 2 x 2 km cell of high suitability 
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shared a physical connection with neighboring cells of high suitability (using the 8-neighbor 

rule), the group of linked cells was considered as a core habitat patch. However, the minimum 

mapping unit for habitat patches was a 2x2 km cell of high suitability habitat (4 km2), given 

that even small forested areas can be important to connectivity if they are used as stepping 

stones by animals (Saura et al. 2014; Herrera et al. 2017).  

ASSESSING CONNECTIVITY VIA NETWORK ANALYSIS 

A graph theory approach was used to measure network connectivity among core habitat 

patches for each of the six target species. A graph represents a landscape as a set of nodes, i.e., 

core habitat patches, and edges, i.e, functional connections among nodes (Urban and Keitt, 

2001; Urban et al., 2009). A graph is connected when there exists a path (edge) between each 

pair of nodes, meaning that every node is reachable from some other node. On the other 

hand, an unconnected graph may include several connected components or subgraphs, which 

are clusters of interconnected nodes (reachable for each species based on their dispersal 

distance) that are completely disconnected from other clusters. A graph component is a 

connected subgraph (Bunn et al. 2000; Urban and Keitt 2001; Urban et al. 2009).   

Using Conefor 2.6 (Saura and Torné 2009), for each species I first calculated the probability of 

connectivity (PC) index, considered effective in identifying the habitat areas that most 

contribute to overall landscape connectivity (Saura and Pascual-Hortal 2007; Bodin and Saura 

2010; Rubio and Saura 2012). This index is based on a probabilistic connection model, where 

the dispersal probability between two habitat patches is obtained as a decreased function of 

edge-to-edge interpatch distance following a negative exponential function. The PC index is 

based on the habitat availability concept, which considers a patch itself as a space where 

connectivity occurs, integrating habitat patch area (intrapatch connectivity) and connections 

between different patches (interpatch connectivity) in a single measure (Saura and Pascual-
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Hortal, 2007). Therefore, habitat availability for a species may be low if habitat patches are 

poorly connected, but also if the habitat is connected but scarce (Pascual-Hortal and Saura 

2006; Saura and Pascual-Hortal 2007).   

For this analysis, the median dispersal distances for each mammal species was calculated 

following (Bowman et al., 2002) as: 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 7√ℎ𝑜𝑚𝑒 𝑟𝑎𝑛𝑔𝑒, 

where the home range was the average of home range estimates reported in the literature for 

each species (Eisenberg 1989; Fragoso 1998; Emmons and Feer 1999; Henry 1999; Presley 

2000; Jacomo 2004; Keuroghlian et al. 2004; Silveira 2004; Oliveira and Cassaro 2005; A.L.J. 

Desbiez et al. 2009; Cañas 2010; Mazzolli 2010; Medici 2010; de Oliveira et al. 2010; Reis et al. 

2010; Desbiez et al. 2012; Keuroghlian et al. 2012; Medici et al. 2012; de Almeida Jácomo et al. 

2013; Azevedo et al. 2013a; Oliveira et al. 2013; Rodrigues et al. 2013; Azevedo et al. 2020). 

The input files (node and connection files) were generated using the Conefor Inputs 1.0.218 

extension for ArcGIS (Jenness 2016), by considering the core habitat areas and attributing the 

median dispersal distances to each species. Next, I evaluated the contribution of each node to 

overall connectivity for each species by systematically removing each node in turn and 

quantifying its’ individual impact in terms of the difference in PC values ((i.e., dPC) relative to 

the full network (Saura and Pascual-Hortal, 2007). Following (Wang et al., 2014), I identified 

the top 1%, 5%, 10%, and 20% of important nodes for each species, meaning the nodes with 

the highest dPC values (highest 1, 5, 10, and 20% of dPC values).   

Following the calculation of species-specific measures of connectivity, I evaluated to what 

degree important patches (nodes) or areas (components) were shared among species, and 

particularly whether an umbrella species (P. concolor) captured all the salient aspects of 



134 

 

connectivity for the community or whether key differences in connectivity were observed 

between species groups according to body size or dietary guild.  Comparisons were made by 

calculating the overlap between the core habitat patches most important to connectivity for 

(1) pumas versus the other five species, pumas and frugivores (D. tajacu, T. pecari, T. 

terrestris), or pumas and mesocarnivores (E. barbara, and L. pardalis), and (2) between 

carnivores (E. barbara, L. pardalis, and P. concolor) and frugivores. 

Lastly, I evaluated the degree to which strictly protected areas (7.47% of the landscape) versus 

sustainable use protected areas (26.40%) contributed to connectivity in the study area. 

Following gap analysis methodology, I calculated the percentage of the top 1, 5, 10, and 20% of 

important habitat nodes  that fell within the boundaries of protected areas (Scott et al. 1993; 

Jennings 2000).  Important patches falling outside of protected area boundaries were 

identified as critical “gaps” in the protected area network. To identify the most important core 

habitat areas for connectivity across the six species, the results from single species analyses 

were combined to represent core connectivity areas for all species. ArcGIS 10.7.1 and the free 

software R 3.6.0 were used for all geoprocessing analyses (R Core Team 2019). 

RESULTS 

In contrast to the modeling results reported by Bonjorne de Almeida (Chapter 3), which 

included 28 species rather than being restricted solely to forest-dependent species, the 

multispecies occupancy model refit herein yielded larger effect sizes and showed seven of the 

eight species to have positive and informative coefficients with respect to the forest amount 

variable (Table 1; Appendix 1). The model achieved convergence for all parameters: Gelman-

Rubin statistic ≈ 1 (Kéry, 2010). Model validation with out-of-sample data revealed that ~20% 

of the landscape (represented by bins 9 and 10) represented suitable (core) habitat for D. 

tajacu, T. pecari, E. barbara, and L. pardalis, ~30% of the landscape (bins 8-10) was suitable for 



135 

 

P. concolor, and ~40% was suitable for T. terrestris (Figure 1, Appendices 2 , 3, 4). For P. 

concolor and T. terrestris, I considered the peak in occurrence records around bins 7 or 8 

followed by a decline with increasing bin rank to reflect a lack of recorded observational data 

within the larger patches represented by strictly protected areas where the species are known 

to occur (see Appendix 4) rather than by an actual decline in suitability within the higher bin 

ranks.  This interpretation was confirmed by state park staff, who commonly find footprints of 

both species but do not record them. Except for P. concolor, which had limited validation data 

especially at high bin values, all species yielded 𝜌 ≥ 0.6, indicating valid model predictions.  

Habitat appeared most aggregated for D. tajacu, with 145 nodes, and most fragmented for E. 

barbara, and T. pecari, with 206, and 205 nodes, respectively (Figure 2). Yet, T. pecari, with its 

large dispersal distance (~55 km) proved to be the least isolated species, exhibiting the most 

connections among nodes (3890 edges) and a unique component (i.e., totally connected 

graph). In contrast, D. tajacu, the species with the smallest dispersal distance (~10 km), had 

the highest number of isolated habitat areas, exhibiting 21 components and showed the 

fewest connections among nodes (145 edges).  

Core habitat patches were ranked in importance based on the dPC index and mapped to show 

for each species the most important 1%, 5%, 10%, and 20% of nodes along with everything 

else (>20%; Figure 3). A small portion of the nodes exhibited much larger dPC values, with the 

top 1%, 5%, and 10% of nodes, representing 56%, 89%, and 95% of the total dPC values, 

respectively. The nodes showing the highest 5% dPC values (top 5%) represented large habitat 

patches (Figure 3). In terms of the value of P. concolor as a potential umbrella species, 62.26-

64.18% of the important nodes were shared between P. concolor and all the other species 

(60.29-74.56% shared between puma and mesocarnivores). Likewise, when comparing species 
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of differing natural history requirements, carnivores and frugivores shared 68.59-86.21% of the 

most important nodes (Table 3). 

Considering the value of protected areas in ensuring multispecies connectivity in this region, 

one third (up to 33.86%) of the most important nodes for connectivity fell outside any 

protected area designation (Figure 4). Figures 5 shows the multispecies connectivity model 

considering the top 1% most important nodes and the protected areas in the studied area. 

Only 10 out of the 60 state or federal protected areas in the landscape studied had more than 

80% of its area indicated as priority areas for connectivity. Three of these were sustainable use 

protected areas: Cananeia-Iguape-Peruíbe Environmental protected area, Serra do Mar 

Environmental protected area, and Despraiado Reserve for sustainable development, and 

seven were strictly protected areas: Serra do Mar, Jurupará, Campos do Jordão, Carlos Botelho 

state parks, Jureia-Itatins, Banhados de Iguape, and Chauás Ecological stations. However, 37 

protected areas failed to encompass critical areas for connectivity within their boundaries 

when considering the highest priority nodes (top 1% of dPC values).  That dropped to 23 when 

considering the top 20% of most important nodes (Appendix 5). 

DISCUSSION 

Ideally, protected areas designed to maintain biodiversity cover a representative sample of 

regional biodiversity and are functionally connected, facilitating movements of individuals 

within the protected areas network (Bauduin et al. 2020) and forming the basis for 

metapopulation dynamics (Hanski 1998). An even better scenario might establish protection 

around the core habitats most important to regional connectivity, yet few assessments of the 

gaps in the protected area network consider connectivity directly.  My multi-species, network-

based assessment of connectivity in southeastern Brazil revealed that despite the studied 

landscape having a relatively large proportion of area under protection (up to 33% of the study 
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area and covering ~66% of the core habitat areas for the six forest-dependent mammals in this 

study), fully one third of the key habitats supporting community connectivity in the region 

lacked any sort of protection. On the flip side, that means the majority of priority areas for 

community connectivity in this study fell under some form of protection, either in strictly 

protected areas (up to 32.16%) or multiple use protected areas (up to 40.90%). The type (or 

level) of protection matters as many species show increased likelihood of occurrence given 

higher levels of protection (Nagy-Reis et al. 2017; Ferreira et al. 2020), which often leads to 

greater species richness in strictly protected areas compared to areas of lesser protection 

(Ferreira et al. 2020).  Most of the strictly protected areas in the studied landscape are state 

parks (IUCN category II; Dudley, 2013), the majority represented entirely by public lands (Brazil 

2000). Sustainable use protected areas in the region mostly represent Environmental 

protected areas (Áreas de Proteção Ambiental, APA) – IUCN category V (Dudley 2013), typically 

large areas allowing various forms of natural resource use or extraction, where biodiversity 

protection remains a secondary objective (Rylands and Brandon 2005). In fact, APAs are closer 

to a mechanism of land-use management than actual land protection (Rylands and Brandon 

2005). Nevertheless, sustainable use protected areas sustain forest cover better than 

unprotected landscapes (Geldmann et al. 2015), and could play a fundamental role in 

biodiversity conservation when covering areas important for connectivity as observed in this 

study.  Nevertheless, in this Atlantic Forest biome, nearly half of all protected areas lacked any 

apparent value for connectivity, at least with respect to the medium- to large-bodied and 

forest-dependent mammals considered in this study—demonstrating the risks involved in 

considering only protected areas when assessing landscape connectivity.   

Likewise, designating areas for conservation based on umbrella species, which may be 

undertaken largely for expediency reasons, leaves uncertain the degree to which other species 

may be afforded “trickle-down” protection (Favreau et al. 2006). In fact, many studies suggest 
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the failure of the umbrella species approach for community conservation (Andelman and 

Fagan 2000; Minor and Lookingbill 2010; Brodie et al. 2015; Meurant et al. 2018; Brennan et 

al. 2020). Similarly, the focus on one group of species (usually carnivores, which represent 

many wide-ranging species) has often been done when evaluating connectivity in fragmented 

landscapes (Crooks et al. 2011; Kanagaraj et al. 2013; Castilho et al. 2015; Ashrafzadeh et al. 

2020; Diniz et al. 2020). However, to target only one group would likely miss the prioritization 

of important areas for other groups of species (e.g., frugivores), as has been found by other 

studies (Brodie et al. 2015; Mimet et al. 2016). Although I observed that the majority of 

important areas for connectivity were shared between pumas and the other species (~62-

64%), or between carnivores and frugivores (~69-86%), important areas were missed when 

targeting one species or one specific group as an umbrella since landscape and anthropogenic 

factors have differing effects on each species probability of occurrence. 

In this study, we considered all forest-dependent mammals reliably detectable by trail cameras 

as representatives of a broader forest mammalian community.  Our six focal species 

demonstrated a wide range of dispersal capabilities (median dispersal distances from 10 to 70 

km), encompassing the dispersal distances for many other medium and large-sized mammals 

(Minor and Lookingbill 2010). And, importantly, we identified core habitat patches specific to 

each species rather than by the boundaries of protected areas.  Overall, core habitat appeared 

to be well connected for the species studied, with the exception of D. tajacu, the species 

exhibiting the lowest dispersal capability. The dPC index integrates intra- and inter-patch 

connectivity in one measure and highlighted the importance of larger habitat patches for 

connectivity.  A patch itself is a space where connectivity occurs (Pascual-Hortal and Saura 

2006; Saura and Pascual-Hortal 2007), and the dPC index ascribes large contributions to 

connectivity from larger habitat patches. Given the configuration of large patches in my study 

landscape, the landscape seemed much more connected, with few isolated core habitat areas 
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(represented by the number of components in each graph), for species having a median 

dispersal distance >20 km.  However, it is important to note that representing movement 

ability as a mean dispersal distance alone may fail to effectively capture habitat isolation 

should the landscape offer differential resistance to species’ movements (Cushman et al. 

2006). Therefore, a step forward to address connectivity in this landscape would be to identify 

pathways among core habitat areas by building resistance to movement layers, ideally 

analyzing data on movement of forest-dependent mammal species on human-dominated 

landscapes, and genetic data, two of the best approaches to build resistance to movement 

layers (Cushman et al. 2006). Additionally, not all forested areas were considered in the 

network analysis, rather core habitat was defined specific to each species based on their 

responses to forest cover, human developments, and elevation.  Given the combination of 

residual forest patches and other land cover types, combined with differential use of the 

landscape by humans, it is likely that that the so-called “matrix” will lead to varying degrees of 

permeability for dispersal among habitat patches (Castilho et al. 2015; Zeller et al. 2016).   

For a long time, the creation of protected areas had been done opportunistically in Brazil, but 

since 2000 Brazilian environmental policy included connectivity as one of the important 

components when establishing and managing reserves (Brazil 2000). Recently a new and 

relatively small strictly protected area, Mantiqueira Paulista natural monument, with 10,363 

ha (São Paulo, 2021) was created that my analysis indicated as encompassing a considerable 

amount of area critical to connectivity for the mammalian community – highlighting the 

potential for new protected areas to provide critical habitat value, especially by inclusion of 

less represented characteristics within the Atlantic Forest hotspot such as old-growth forest 

remnants (Faria et al. 2009; Galetti et al. 2009; Tabarelli et al. 2010). Nevertheless, inevitably 

other approaches need to be considered in addition to an increase in the protected area 

system coverage, such as defining zones to conserve the most important patches for 
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connectivity within multiple use protected areas, or even planning management practices 

compatible with forest conservation on private lands. It is important that the identification of 

core habitat areas that also contribute strongly to landscape connectivity both within and 

outside of protected areas is made available for managers and policy makers, especially when 

considering sustainable use protected areas, which are subjected to different activities (e.g., 

mining, agriculture, logging; (Brazil, 2000). On the other hand, with ongoing habitat loss and 

fragmentation outside protected areas, landscape planning becomes crucial for maintaining 

connectivity for different species (Sala et al. 2000). Rural properties in the Atlantic Forest are 

required to maintain at least 20% of their land as legal reserve, which may include riparian 

forests (Brazil 2012). The small patches maintained on private parcels can play an important 

role as stepping stones connecting larger habitat patches (Diniz et al. 2020). Yet many land 

holdings do not follow what is stated by law (Soares-Filho 2013), and as such there is room to 

better target conservation of existing forest remnants especially on properties that overlap 

core habitat areas for connectivity. In this sense, establishing legal reserves on public and 

private lands could play an important role in maintaining connectivity for forest-dependent 

mammals across the human-dominated Atlantic Forest biome. Recent forest regeneration in 

parts of the study area has been shown to benefit landscape connectivity (Lira et al. 2012). 

Additionally, the implementation of payment for ecosystem services that has started in some 

regions of São Paulo and Minas Gerais states has the potential to contribute to forest 

maintenance, with properties participating in the program showing a positive effect on forest 

cover (Ruggiero et al. 2019). Thus, my maps of areas critical to connectivity for the forest-

dependent mammalian community may be useful for strategic planning as well as more 

localized tactical conservation operations in the region. 

In particular, targeting the conservation of riparian forests has a potential of increasing 

connectivity for many species in this region (Gillies and Clair 2008; Lees and Peres 2008; 
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Zimbres et al. 2017), and in particular D. tajacu. Although the conservation of riparian forest is 

mandatory by the forest code (Brazil 2012), it is estimated that an area of 1.5 M ha should be 

reforested to meet the law in the Atlantic Forest biome considering riparian forests, with a 

total of 6 M ha in need of restoration overall, with São Paulo and Minas Gerais states having 

some of the largest areas in need of restoration (Soares-Filho 2013). Considering only the area 

of this study, that leaves 238,302 ha (~3.6%) in the area in need of restoration or 

compensation scheme to achieve private conservation targets (Soares-filho et al. 2014; 

Sparovek 2018). The restoration of these areas is expected to have a large effect on current 

connectivity, increasing it by over 400% for apex predators (Castilho et al. 2015). Recently, 

Brazil has set a target of restoring at least 12 M ha of native vegetation considering all biomes 

by 2030 so that more properties meet the requirements of legal reserves set by the forest 

code (Brazil 2012; Brazil 2017). 

This study provided the identification of key areas to maintain the connectivity under existing 

habitat conditions for a suite of forest-dependent mammals in the human-dominated, 

Brazilian Atlantic Forest. Most of these areas are already in strictly or multiple use protected 

areas, so setting the most important areas in higher protection zones in protected areas’ 

management plans could be beneficial for maintaining connectivity, which stimulates gene 

flow through the movement of mammals among habitat patches, contributing to 

metapopulation survival (Sharma et al. 2013). Additionally, using a functional connectivity 

approach, the potential connectivity of core habitat patches was identified based on 

mammals’ dispersal capabilities (Fagan and Calabrese 2006). Considering multiple species for 

identifying the key areas to connectivity showed that relying on only one species (i.e., as an 

umbrella species) or a group of species (i.e., carnivores), does not represent well what is 

needed by each species individually, since each species shows divergent distributions in 

response to landscape and anthropogenic factors. Therefore, when there are many threatened 



142 

 

species (in this case, the focus was on forest-dependent species), the best approach is to 

consider all species to build connectivity models. Finally, at least for one species the study 

indicates the isolation of some populations, so evaluating whether this isolation reflects in the 

decrease of genetic variability could be an important next step to evaluate whether efforts of 

forest restoration should be implemented (Lira et al. 2012) in a way that could in time 

complement the existing core habitat areas for the forest-dependent mammal species, which 

are the species most likely to have their persistence in jeopardy in the landscape in case of 

deforestation of new areas (Brook et al. 2003). If we consider other vertebrate groups (e.g., 

birds, amphibians), whose core habitat areas probabibly differ than those for mammals, it is 

likely that priority areas for connectivity would be more comprehensive of what would be 

priority areas for connectivity of vertebrate populations (Liu et al. 2018). Therefore, the 

allocation of restoration efforts to serve both as new habitat areas and increase functional 

connectivity would be highly beneficial for the regional vertebrate community.  
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Table 1. Standardized beta coefficients from the multi-species, multi-session occupancy model 

fit to eight forest-dependent species within the Atlantic Forest study area, Brazil. Values 

followed by an asterisk indicate statistical significance (95% credible intervals not overlapping 

zero). 

Species Group 

Beta coefficients (SE) 

Intercept Forest proportion Human footprint Elevation 

Dasyprocta iacki Frugivore 0.44 (4.55) 0.91 (0.56) 0.31 (0.38) -1.28 (0.44)* 

Dicotyles tajacu Frugivore 0.36 (4.54) 1.96 (0.61)* -0.11 (0.23) 0.47 (0.23)* 

Tapirus terrestris Frugivore 0.37 (4.54) 2.81 (0.95)* -0.53 (0.33)* -0.73 (0.26)* 

Tayassu pecari Frugivore 0.37 (4.54) 1.92 (0.72)* -0.08 (0.27) 0.92 (0.28)* 

Eira barbara Carnivore 0.38 (4.65) 0.67 (0.27)* -0.23 (0.23) 0.31 (0.33) 

Leopardus pardalis Carnivore 0.37 (4.42) 0.50 (0.20)* -0.12 (0.16) 0.09 (0.19) 

Panthera onca Carnivore 0.34 (4.68) 2.25 (1.23)* -0.03 (0.33) -0.66 (0.45) 

Puma concolor Carnivore 0.48 (4.57) 0.63 (0.23)* -0.19 (0.19) -0.08 (0.22) 

8 forest-dependent species Community 0.37 (4.36) 1.45 (0.59)* -0.12 (0.20) -0.10 (0.38) 
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Table 2. Mean home range, and median dispersal distances estimated for six mammal species 

based on Bowman et al. (2002). 

Species Average home 

range (km2) 

Median dispersal 

distance (km) 

References for home range 

Dicotyles tajacu 2 10 (A. L. Desbiez et al., 2009; 

Desbiez et al., 2012; Henry, 

1999; Keuroghlian et al., 

2004) 

Tapirus terrestris 8 20 (Cañas, 2010; Medici, 2010; 

Medici et al., 2012) 

Eira Barbara 16.5 30 (Eisenberg, 1989; Emmons 

and Feer, 1999; Presley, 

2000; Reis et al., 2010; 

Rodrigues et al., 2013) 

Leopardus pardalis 20 30 (de Oliveira et al., 2010; 

Oliveira et al., 2013; Oliveira 

and Cassaro, 2005) 

Tayassu pecari 64 55 (de Almeida Jácomo et al., 

2013; A. L. J. Desbiez et al., 

2009; Fragoso, 1998; Jacomo, 

2004; Keuroghlian et al., 

2012, 2004) 

Puma concolor 94 70 (Azevedo et al., 2020, 2013b; 

Mazzolli, 2010; Silveira, 2004) 
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Table 3. Percentage of the nodes prioritized for each group of species when connectivity 

model was optimized for a potential umbrella species (Puma concolor) or other group 

(carnivores). 

Most important nodes and 

focal groups or species for 

network analysis 

Percentage of core habitat areas (nodes) prioritized for non-

focal groups or species 

 All species but puma Frugivores Mesocarnivores 

Top 1%    

Puma 64.18 60.88 74.56 

Carnivores - 68.59 - 

Top 5%    

Puma 62.26 63.18 60.29 

Carnivores - 84.47 - 

Top 10%    

Puma 62.89 63.68 61.27 

Carnivores - 85.55 - 

Top 20%    

Puma 63.17 64.06 61.21 

Carnivores - 86.21 - 
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Figure 1. Map (A) showing the predicted probability of habitat use for Eira Barbara, displayed 

as 10 equal-area bins, along with out-of-sample observations (black dots) used for model 

validation. Model validation (B) showing the proportion of out-of-sample locations 

corresponding to each of the equal-area bins, with a proportion of 0.10 being expected to 

occur at random.  For this species, the top two bins corresponded to suitable habitat for the 

connectivity analysis. 

 

 

 



147 

 

 

 

Figure 2. Nodes (core habitat patches; gray polygons) and edges (connections between nodes; 

black lines) for six forest-dependent species in the Atlantic Forest study area, Brazil. For each 

species, the number of nodes, components (connected subgraphs), and edges are also 

indicated. 
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Figure 3. Core habitat classified by node importance to connectivity based on the dPC index 

and ranked from the highest (top 1% of the nodes) to lowest values (other core areas). 

Average dPC values are given in parentheses for each species and node category. 
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Figure 4. Gap in protection considering all core habitat areas (core areas) across the six forest-

dependent mammals, and key nodes for community connectivity identified as the top 1, 5, 10 

or 20% of dPC values. 
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Figure 5. Most important nodes for single species summed together to generate a multispecies 

connectivity model. Areas in light grey indicate the core habitat areas and in dark grey, the 

most important nodes (habitat patches) for connectivity for each species (insert maps) and for 

all of them altogether (central map). 
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Appendix 1. Beta coefficients (SE) for the forest amount covariate at 2x2 km grid cell extents 

following Model 1 (linear effects for all covariates) when including 28 or eight mammal species 

in the multispecies occupancy models. Bold values indicate significant results (credible 

intervals not overlapping zero). 

Species Beta coefficients (SE) for the forest amount covariate 

Chapter 2 (28 mammal species) Chapter 3 (eight forest-dependent species) 

Dasyprocta iacki 0.58 (0.44) 0.91 (0.56) 

Dicotyles tajacu 1.52 (0.49) 1.96 (0.61) 

Tapirus terrestris 1.95 (0.61) 2.81 (0.95) 

Tayassu pecari 1.29 (0.56) 1.92 (0.72) 

Leopardus pardalis 0.46 (0.19) 0.50 (0.20) 

Panthera onca 1.07 (0.69) 2.25 (1.23) 

Puma concolor 0.58 (0.23) 0.63 (0.23) 

Eira Barbara 0.57 (0.25) 0.67 (0.27) 

 

 

 

 

 

 

 



152 

 

Appendix 2. Prediction maps based on a multispecies occupancy model for eight forest-

dependent mammal species. Black squares represent species’ points of occurrences from the 

literature or unpublished data (records after year 2000). Each bin rank encompasses 10% of 

the extent of the study area, where bin 1 have the lowest probability of use by each species, 

whereas bin 10, the greatest. 
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Appendix 3. Model validation of six mammal species probability of use across a human-

modified Atlantic Forest landscape. The observed occurrences (N) were not used for modeling 

and came from the literature or unpublished data. Each bin rank encompasses 10% of the 

extent of the study area. The expectation is that 10% of the observed occurrences should 

correspond to each bin were they governed by random chance alone. Lower values or higher 

values would indicate non-suitability or suitability for each species probability of use, 

respectively. Significant Spearman-rank correlation (𝜌) indicate little evidence for poor model 

performance. 
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Appendix 4. Prediction maps indicating bins 9 and 10 for Puma concolor and bin 10 for Tapirus 

terrestris. Each bin rank encompasses 10% of the extent of the study area, with bin 10 having 

the largest probability of use as indicated by the multispecies multisession occupancy model. 

Black squares represent points of occurrences for all eight forest-dependent species from the 

literature or unpublished data (records after year 2000). 
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Appendix 5. Prioritization of areas for connectivity for six forest-dependent mammals within 

strictly and sustainable use protected areas. The important areas for connectivity within the 

protected areas are reported considering the top 1%, 5%, 10%, and 20% nodes with highest 

dPC index. 

Protected Area 

  

Administration 

  

Type 

  

IUCN 

category 

  

Year of 

creation 

  

Area 

(km2) 

  

Priority areas for connectivity 

within protected areas (%) 

Top 

1% 

nodes 

Top 

5% 

nodes 

Top 

10% 

nodes 

Top 

20% 

nodes 

Serra do Mar 

State Park State 

Strict 

Protection 

II - National 

Park 1977 3320.00 81.43 82.68 82.68 82.68 

Bacia do Paraíba 

do Sul 

Environmenal 

Protected Area Federal 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1982 2926.00 3.09 10.21 11.06 11.79 

Piracicaba 

Juqueri-Mirim 

Área II 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1987 2727.08 0.00 3.39 3.41 3.96 

Serra do Mar 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1984 2682.26 87.48 87.48 87.48 87.48 

Sistema 

Cantareira State 

Sustainable 

Use 

V - 

Protected 1998 2528.01 0.00 4.86 6.89 7.62 
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Environmenal 

Protected Area 

Landscape/ 

Seascape 

Serra da 

Mantiqueira 

Environmenal 

Protected Area Federal 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1985 1815.96 45.40 47.99 48.64 49.78 

Fernão Dias 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1997 1791.59 1.05 19.07 19.07 20.08 

Cananeia-

Iguape-Peruíbe 

Environmenal 

Protected Area Federal 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1984 1400.65 86.44 86.50 86.50 86.50 

Itupararanga 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1998 941.30 2.74 2.76 2.76 3.96 

Jureia-Itatins 

Ecological 

Station State 

Strict 

Protection 

Ia - Strict 

Nature 

Reserve 1986 840.75 95.19 95.28 95.28 95.28 

Jundiaí 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1984 495.33 0.00 7.51 7.83 8.77 
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Tietê 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1983 461.74 0.00 0.00 0.00 0.00 

Bacia 

Hidrográfica do 

Rio Machado 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1999 436.23 0.00 0.00 0.00 0.00 

Sapucaí Mirim 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1998 386.45 4.41 6.53 6.53 10.60 

Cabreúva 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1984 371.98 0.00 13.21 13.21 14.37 

Campos do 

Jordão 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1984 287.02 57.74 57.74 57.74 57.74 

Carlos Botelho 

State Park State 

Strict 

Protection 

II - National 

Park 1982 273.68 88.90 88.90 88.90 88.90 

Jurupará State 

Park State 

Strict 

Protection 

II - National 

Park 1978 262.50 81.61 81.61 81.61 81.61 

Piracicaba 

Juqueri Mirim State 

Sustainable 

Use 

V - 

Protected 1987 247.15 0.00 0.00 0.00 0.00 
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Área I 

Environmenal 

Protected Area 

Landscape/ 

Seascape 

Banhados de 

Iguape Ecological 

Station State 

Strict 

Protection 

Ia - Strict 

Nature 

Reserve 2006 165.89 99.65 99.65 99.65 99.65 

Itaberaba State 

Park State 

Strict 

Protection 

II - National 

Park 2010 151.13 0.00 56.19 57.13 57.13 

Cajamar 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1984 133.09 0.00 0.00 0.00 7.07 

São Francisco 

Xavier 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 2002 113.33 0.00 53.93 53.93 53.93 

Itapetinga State 

Park State 

Strict 

Protection 

II - National 

Park 2010 101.92 0.00 31.55 53.66 53.66 

Várzea do Rio 

Tietê 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1987 97.78 0.00 0.00 0.00 0.00 

Restinga de 

Bertioga State 

Park State 

Strict 

Protection 

II - National 

Park 2010 91.15 77.75 77.75 77.75 77.75 
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Mantiqueira 

Paulista Natural 

Monument State 

Strict 

Protection 

III - Natural 

Monument 

or Feature 2021 91.03 65.11 65.11 65.11 65.11 

Campos do 

Jordão State 

Park State 

Strict 

Protection 

II - National 

Park 1941 81.30 86.34 86.34 86.34 86.34 

Cantareira State 

Park State 

Strict 

Protection 

II - National 

Park 1968 76.19 0.00 0.00 51.77 56.87 

Ipanema 

National Forest Federal 

Sustainable 

Use 

VI - 

Protected 

area with 

suistainable 

use of 

natural 

resources 1992 53.90 0.00 0.00 0.00 25.08 

Despraiado 

Reserve for 

Sustainable 

Development State 

Sustainable 

Use 

VI - 

Protected 

area with 

suistainable 

use of 

natural 

resources 2013 39.53 95.86 95.86 95.86 95.86 

Pedra Grande 

Natural 

Monument State 

Strict 

Protection 

III - Natural 

Monument 

or Feature 2010 32.97 0.00 60.48 64.29 64.29 



160 

 

Pedra do Baú 

Natural 

Monument State 

Strict 

Protection 

III - Natural 

Monument 

or Feature 2010 31.54 0.00 0.00 0.00 11.62 

Campina do 

Encantado State 

Park State 

Strict 

Protection 

II - National 

Park 1994 31.27 0.00 92.87 92.87 92.87 

Chauás 

Ecological 

Station State 

Strict 

Protection 

Ia - Strict 

Nature 

Reserve 1978 26.45 97.02 97.02 97.02 97.02 

Edmundo 

Navarro de 

Andrade State 

Forest State 

Sustainable 

Use 

VI - 

Protected 

area with 

suistainable 

use of 

natural 

resources 2002 22.24 0.00 0.00 0.00 0.00 

Juquery State 

Park State 

Strict 

Protection 

II - National 

Park 1993 19.78 0.00 0.00 0.00 0.00 

Parque e 

Fazenda do 

Carmo 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1989 19.74 0.00 0.00 0.00 0.00 

Lagamar de 

Cananeia State 

Park State 

Strict 

Protection 

II - National 

Park 2008 12.19 40.13 40.13 40.13 40.13 
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Barra do Uma 

Reserve for 

Sustainable 

Development State 

Strict 

Protection 

VI - 

Protected 

area with 

suistainable 

use of 

natural 

resources 2013 10.74 28.39 28.39 28.39 28.39 

Represa Bairro 

da Usina 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1986 9.93 0.00 0.00 0.00 0.00 

Pedra Branca 

Area with 

relevant 

ecological 

importance State 

Sustainable 

Use 

IV - 

Habitat/Spe

cies 

Managemen

t Area 1987 6.30 0.00 31.64 31.64 31.64 

Marinha do 

Litoral Centro 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 2008 6.26 0.00 0.00 0.00 0.00 

Xixová-Japuí 

State Park State 

Strict 

Protection 

II - National 

Park 1993 6.16 0.00 0.00 0.00 0.00 

Mananciais de 

Campos do 

Jordão State 

Park State 

Strict 

Protection 

II - National 

Park 1993 5.17 71.63 71.63 71.63 71.63 
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Jaraguá State 

Park State 

Strict 

Protection 

II - National 

Park 1961 4.89 0.00 0.00 0.00 0.00 

Marinha do 

Litoral Norte 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 2008 3.78 1.96 1.96 1.96 1.96 

Lorena National 

Forest Federal 

Sustainable 

Use 

VI - 

Protected 

area with 

suistainable 

use of 

natural 

resources 2001 2.81 0.00 0.00 0.00 0.00 

Mata de Santa 

Genebra Area 

with relevant 

ecological 

importance Federal 

Sustainable 

Use 

IV - 

Habitat/Spe

cies 

Managemen

t Area 1985 2.42 0.00 0.00 0.00 0.00 

Nova Baden 

State Park State 

Strict 

Protection 

II - National 

Park 1974 2.13 0.00 0.00 0.00 0.00 

Alberto Löefgren 

State Park State 

Strict 

Protection 

II - National 

Park 1963 1.85 0.00 0.00 0.00 0.00 

São Sebastião 

Area with 

relevant 

ecological 

importance State 

Sustainable 

Use 

IV - 

Habitat/Spe

cies 

Managemen

t Area 2008 0.95 1.29 1.29 1.29 1.29 
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Corumbataí 

Botucatu-Tejupá 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1983 0.94 0.00 0.00 0.00 0.00 

Itapeti Ecological 

Station State 

Strict 

Protection 

Ia - Strict 

Nature 

Reserve 1952 0.90 0.00 0.00 0.00 0.00 

Ara State Park State 

Strict 

Protection 

II - National 

Park 1969 0.67 0.00 0.00 0.00 0.00 

Haras de São 

Bernardo 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1987 0.43 0.00 0.00 0.00 0.00 

Mata do 

Iguatemi 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 1993 0.34 0.00 0.00 0.00 0.00 

Fontes do 

Ipiranga State 

Park State 

Strict 

Protection 

II - National 

Park 1969 0.33 0.00 0.00 0.00 0.00 

Valinhos 

Ecological 

Station State 

Strict 

Protection 

Ia - Strict 

Nature 

Reserve 1966 0.18 0.00 0.00 0.00 0.00 

Marinha do 

Litoral Sul 

Environmenal 

Protected Area State 

Sustainable 

Use 

V - 

Protected 

Landscape/ 

Seascape 2008 0.04 0.00 0.00 0.00 0.00 
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CONCLUSIONS 

The primary goal of this dissertation was to evaluate how responses by medium and large-

sized mammals to landscape (primarily forest amount) and anthropogenic factors (especially 

the presence of dogs or humans in forest remnants) influence their persistence in a human-

modified Atlantic Forest landscape. This study has brought new insights on how vulnerable the 

persistence of forest-dependent species, represented especially by frugivore (e.g., tapir, white-

lipped peccary, collared peccary) and some carnivore species (jaguar, puma, ocelot), is to 

forest loss that has occurred in the past, in an landscape where the majority of forest loss has 

occurred more than 40 years ago. In fact, these species might be even more threatened than 

previously thought, given that they tend to be replaced by more generalist species in 

landscapes with less than 78% of forest amount in 2x2 km landscapes, a threshold much higher 

than previously reported (Andrén 1994; Banks-Leite et al. 2014; Lima and Mariano-Neto 2014; 

Boesing et al. 2017; Leite et al. 2018).  

One distinguishing aspect of this study was inclusion of the whole gradient of forest amount in 

the sampling design. Previous studies have failed to do so, and often included landscapes with 

up to 50% of forest cover but not beyond this proportion, possibly influenced by theoretical or 

logistical reasons (Swift and Hannon 2010). Another distinguishing aspect was my desire to 

demonstrate how different thresholds might be based on different scales used when 

calculating forest amount in landscapes. Failure to address the influence of scale when looking 

for thresholds might compromise the reliability of the results, given the wide range of 

thresholds found when using very small landscapes (0.25x0.25 km) to very large ones (60x60 

km), with critical points varying from 45-87% depending upon the scale used. Some species 

(especially forest-dependent frugivores) showed that their probability of use is influenced not 

only by the grid cell where they were detected but also on the neighboring context of that 



165 

 

area. This indicates that their higher probability of use is influenced by the availability of larger 

forest amount at a landscape-context, suggesting the need for contiguous forests for their 

long-term persistence. 

Anthropogenic factors, such as the use of forest remnants by domestic dogs or humans, also 

have an important influence on some medium-sized mammals, and a few species (ocelot, 

oncilla, and armadillo) have shown significant spatial avoidance of areas where dogs and/or 

humans were present. Behavioral responses such as changes in activity patterns in areas with 

higher or lower probability of use by dogs were only observed for paca. However, the fact that 

this study found that the probability of use of dogs in any of the sampled Atlantic Forest 

remnants is always higher than 41% could have prevented the finding of behavioral responses 

by native species, as dogs are widespread in the study area and thus wildlife are unable to 

escape them. Therefore, studies comparing landscapes like mine to areas that could still be 

considered in a primitive state, with the absence of dogs or people, could help in evaluating 

more clearly how mammal species change their spatial use or whether they adapt temporally 

to the presence of potential new predators in the system. Such studies would not be possible 

within the Atlantic Forest, where more than 70% of the Brazilian population lives and most of 

the major cities and most developed infrastructure systems are, but this still could be done in 

other regions, such as the Amazon.  

Another important finding was that dogs in the Atlantic Forest have a free-ranging behavior, 

and their probability of use is usually independent of humans. This finding means that it is 

certainly very challenging to address the problem of free-ranging dogs in forest remnants (and 

especially in protected areas that were created for biodiversity conservation), given that those 

dogs could either be owned by people living near the forest fragments or could already be 

feral and independent of humans. The important take-home message is that the problem of 
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having so many dogs in Atlantic Forest remnants must start being discussed by scientists, 

stakeholders and managers if we are to increase the chance of persistence of native mammal 

species. Not only do dogs act as predators and competitors with native mammals, they are 

also vectors of diseases and there are many examples throughout the world how medium and 

large-sized mammal populations could be jeopardized because of diseases spread by domestic 

dogs (Butler et al. 2004; Roeke-Palmer et al. 1995; Cleveland et al., 2000; Fiorello et al., 2004; 

Funk et al., 2001), which is another question important for investigation by future studies. 

My analyses indicated that most of the core habitat areas for forest-dependent mammals are 

well connected, given that the current forest cover is maintained and considering the dispersal 

capabilities of most of the species evaluated, except for collared peccaries, the species with 

the lowest dispersal capability (~ 10 km). This study has shown which are the key areas to 

maintain existing connectivity (i.e., 1% core areas that contribute the most to connectivity), 

and could help guide protected areas managers when elaborating or updating management 

plans and classifying those areas important to connectivity as having a larger restriction of use 

(i.e., areas to be preserved as forests). A step forward to address connectivity in this landscape 

would be to consider functional connectivity (and not only actual connectivity as has been 

done in this study) by incorporating data on movement of forest-dependent mammal species 

on human-dominated landscapes, and genetic data in order to identify important pathways in 

between core habitat areas. Also, it would be interesting to investigate whether areas pointed 

as having isolated populations (especially of collared peccary) by the developed connectivity 

model already show differences in genetic variability among isolated populations. 

In conclusion, maintaining more than 78% forest cover (within units of 2 x 2 km) across the 

Atlantic Forest landscape is crucial to enhance the probability of persistence of complete 

medium and large-sized mammal communities, but this often means protecting large 
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contiguous forest remnants. This is a very challenging target in a highly fragmented biome, 

where most forest remnants are smaller than 100 ha with average distance of 1.4 km among 

them (Ribeiro et al. 2009), so that forest restoration would be required to meet such a large 

forest proportion in Atlantic Forest landscapes. In this sense, the deficit of forest amount in 

private lands required by the Brazilian forest code and the proclamation of the decade of 

2021-2030 as the United Nations decade on ecosystem restoration, could be propulsors of 

initiatives to not only identify core habitat areas (and the ones that contribute the most to 

connectivity, which could be targeted as potential new protected areas) as has been done in 

this study for medium and large-sized mammals, for other taxa as well (e.g., birds, amphibians) 

but also to identify areas where restoration would be most beneficial to biodiversity 

conservation in the Atlantic Forest. The results found in this dissertation concerning the impact 

of dogs and humans in forest remnants on spatial habitat use or temporal activity of medium 

and large size mammals, the high proportion of forest needed to ensure the persistence of the 

whole medium and large size mammal community, besides the need of conservation of areas 

prioritized for connectivity of forest-dependent mammal populations are contributions that 

could help guide the conservation planning for medium and large mammals in a human-

dominated landscape in the Atlantic Forest. 
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Scholarships 
and Awards 

 

Period 2015 – 2019 

Award LASPAU-administered scholarship to pursue a doctorate degree in the United 
States. 

Details Selected candidate of the Science Without Borders program (Brazilian 
government program for financial support of graduate studies). 

Period 2005 
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Function   Master’s in Ecology, Conservation and Wildlife Management. 

Scholarship CNPq 

Institution Universidade Federal de Minas Gerais (UFMG) – Federal University of Minas 
Gerais 

  

Period 2003 

Function Trainee 

Main 
Activities 

Institution 

Scholarship  

Development of educational materials on genetics for use in public schools of 
São Carlos region, State of São Paulo. 

Universidade de São Paulo (USP) – 2003 

Name and 
address of 
employer 

Universidade de São Paulo (USP) – São Paulo University, Centro de Divulgação 
Científica e Cultural, Center of Scientific and Cultural Disclosure (CDCC), São 
Carlos, SP, Brazil 

 

Period 

Function 

Main Activities 

 

 

Additional 
Coursework  

 

1999 – 2003 

Trainee 

- Work on Environmental Education with students of schools of São Carlos 
municipality and region. 
- Monitoring guided tours in the Cerrado vegetation located on the campus of 
the Federal University of São Carlos. 

2001 – Universidade Federal de São Carlos 

1999, 2000, 2002, 2003 – voluntary work 

2021: Global and regional IUCN Red List Assessments (Workload: 80h) 

2020: II Workshop of Community Ecology (Workload: 40h) 

2020: Biodiversity monitoring: management, analysis, and data synthesis 
(Workload: 49h) 

2017: Intermediate-level workshop on Bayesian integrated population 
modeling (Workload: 40h 

2017: Modeling patterns and dynamics of species occurrence workshop 
(Workload: 64h) 
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Additional 
Coursework  

 

 

 

 

 

 

 

 

 

 

 

 

 

2016: Camera trapping study design and data analysis for occupancy and 
density (Workload: 72h) 

2015: Statistical Modeling in Population Ecology (Workload: 90h) 

2014: Road Ecology (Workload: 120h) 

2014: Use of R Language for the Analysis of Ecological Data (Workload: 60h) 

2013: Digital Image Processing (Workload: 40h) 

2013: Spatial Analysis of Geographic Data (Workload: 40h) 

2012: Occupancy Modeling (Workload: 43h) 

2012: Landscape Ecology: concepts and research methods (Workload: 60h) 

2012: Introduction to Road Ecology (Workload: 16h) 

2011: Planning and Analysis of Ecological Research (Workload: 90h) 

2011: Trophic Ecology of Carnivore Vertebrates (Workload: 60h) 

2011: Geographical Data Management (Workload: 40h) 

2011: Geographical Data Management (Workload: 40h) 

2010: Introduction to Remote Sensing (Workload: 90h) 

2010: Fundaments in Geoprocessing (Workload: 40h) 

2010: Species Distribution Modeling (Workload: 30h) 

2008: Conservation Biology Latin American Course (Workload: 220 h) 

2006: Introduction to Education in the Process of Environmental Management 
(Workload: 136 h) 

2004-2005: Botanical Illustration Course (Workload: 100 h) 

2003: Frugivory and Seed Dispersal Latin American Course (Workload: 120 h) 

2003: Remote Sensing and GIS applied to Biological Conservation (Workload: 
62 h) 

2002: Tropical Ecology Brazil-England Course (Workload: 120 h) 
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Personal skills 
and 

competencies 

 

 

  

Mother tongue Portuguese 

 

Other 
languages 

 

Auto 
Evaluation 

 Understanding Speaking Writing 

European level 
(*) 

 Listening       Reading   Take part in a 
conversation 

Fluency  

      
French 

 
 B1  B1         B1  B1  B1 

English   C1  C1         C1  C1  C1 

Italian   B2  B2         B1  A2  A2 

 

 

(*) Common European Framework of Reference (CECR) 

Computer skills 
and 

competencies 

- Knowledge of Microsoft Office (Word, Excel, Powerpoint) 
- Knowledge of geoprocessing software: ArcGis, GPS Trackmaker, Spring, R 
- Knowledge of statistical software: R, MARK, PRESENCE, SAS, Systat 
- Knowledge of Corel Draw 
- Knowledge of software for reference management (Reference Manager, 

Mendeley). 

 

  

 

 


