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Epigraph 

 

The wolf will live with the lamb, 

The leopard will lie down with the goat, 

The calf and the lion and the yearling together; 

And a little child will lead them. 

The cow will feed with the bear, 

Their young will lie down together, 

And the lion will eat straw like the ox. 

The infant will play near the cobra’s den, 

And the young child will put its hand into the viper’s nest. 

They will neither harm nor destroy  

On all my holy mountain, 

For the earth will be filled with the knowledge of the LORD 

As the waters cover the sea. 

 

Isaiah 11:6 – 9, Holy Bible: New International Version (2011) 
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Abstract 

 

S.A. Slovikosky. A Global Assessment of Scaling Relationships for Carnivore-Human Conflict 

and Leopard (Panthera pardus) Density, 104 pages, 5 tables, 7 figures, 2023. Landscape 

Ecology style guide used. 

 

Synthesizing information across disparate studies remains challenging in part due to scaling 

issues, a concept requiring greater consideration with respect to observations of human-carnivore 

conflict and range-wide predictions of species status. I used published records to examine: 1) 

spatiotemporal scaling in livestock depredation metrics, and 2) global drivers of potential leopard 

(Panthera pardus) abundance. Generally, the apparent magnitude of livestock depredation 

increased with spatial and temporal extent, whereas predicted leopard density decreased with 

spatial extent. Temperature, primary productivity, and human impacts, measured over 1- to 20-

km2 spatial extents, explained 38% of the observed variation in leopard density globally after 

accounting for study design effects. This work provides the first spatially explicit map of 

potential leopard abundance from southern Africa to far-eastern Russia, sheds light on scaling 

relationships for carnivore conflict metrics, and discusses additional work needed to provide the 

most reliable information to guide conservation actions for large carnivores worldwide.  

 

Key Words: carnivore-human conflict, density, leopard, livestock depredation, scale 
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INTRODUCTION 

Of the many terrestrial species of conservation concern, few have received as much research 

attention as large carnivores, namely felids, canids, hyaenids, and ursids (Lozano et al. 2019; 

Ugarte et al. 2019). Given their charismatic appeal and proclivity to engage in conflict with 

people, many studies have focused on population status and threats to species persistence 

(Loveridge et al. 2010, 2022b; Jȩdrzejewski et al. 2018). Of focus across much of this research 

are local environmental drivers that influence carnivore abundances and their interactions with 

human activities (Gastineau et al. 2019; Wilkinson et al. 2020; Loveridge et al. 2022b). 

Recognition of the importance of scale when assessing the influence of environmental and 

anthropogenic drivers of change for wildlife is growing (Nyhus 2016). Associations among 

variables may vary unpredictably with the scale of observation (Miller et al. 2015; Wells et al. 

2019), affecting predictions and muddying cross-study comparisons (Miller et al. 2004; Newman 

et al. 2019). Although much effort has been expended on issues pertaining to large carnivore 

conservation, more clarity is needed to understand 1) whether human-carnivore conflict 

observations exhibit non-linear trends across space and time, and 2) the appropriate scales for 

modeling global drivers of carnivore density. Greater insight into scaling issues is needed to 

draw the most robust conclusions from cross-study comparisons (Dixon Hamil et al. 2016). In 

this thesis, I present two original data chapters, each as a publishable unit. First, based on 213 

published studies, I assessed how the spatial and temporal scale of observation affected metrics 

of human-carnivore conflict, namely the total number of kills, attack incidents, and percent 

annual loss of stock. These are three metrics derivable from readily provided information that 

enable cross-study comparison for carnivore conflict. Next, after controlling for study design 

effects (including spatial scale), I used 136 published estimates to model global drivers of 
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leopard (Panthera pardus) density. I identified optimal spatial scales and non-linear relationships 

to attempt to predict global population size, recognizing that my ecologically-based carrying 

capacity estimate may not reflect actual populations on the ground but instead their potential. 

Each chapter meets the formatting guidelines for the journal Landscape Ecology. 
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CHAPTER 1: Scaling issues in the study of livestock depredation by carnivores 

ABSTRACT 

The magnitude and socioecological drivers of livestock depredation by large carnivores have 

been well-studied across the world. However, very few studies have assessed how observations 

of depredation might vary with spatiotemporal scale. Uncovering scaling relationships may allow 

for more accurate aggregation of observations collected at fine spatial scales, and across diverse 

temporal extents and resolutions, to better inform development of effective policies and 

management actions. Herein, I extracted data from published studies to derive conflict metrics 

(number of animals killed, number of attack incidents, and percent annual loss) and the 

spatiotemporal extent and resolution of the study. Regressions indicated positive relationships 

between outright numbers of attacks or animals killed and spatial and temporal extent, with a 

negative relationship observed for percent annual loss of stock and increasing extent. Scaling 

variables also interacted with other key factors known to influence human-carnivore conflict 

across the diverse socioecological systems reported. Data on resolution (space or time) were too 

sparse to draw conclusions. In fact, reporting on the spatiotemporal dimensions of a study was 

generally lacking. To better elucidate and control for scaling issues going forward, authors 

should take care to better report the spatiotemporal dimensions of their observations. With an 

enhanced understanding of scaling relationships in human-carnivore conflict metrics, future 

work may better elucidate and manage important drivers of conflict.  
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INTRODUCTION 

Human-wildlife conflict, defined as adverse interactions between people and wildlife (Nyhus 

2016), presents one of the most pressing issues facing large mammal conservation today. Large 

carnivores pose a safety risk to humans (Packer et al. 2005, 2019) and depredate livestock, which 

decreases quality of life for people. Human intolerance then becomes a threat to carnivores due 

to retaliatory killing (Inskip and Zimmermann 2009; Barua et al. 2013), with felids and canids 

considered the greatest overall offenders (Ugarte et al. 2019). Past research of human-carnivore 

conflict evaluation has focused on where and when conflict occurs (Inskip and Zimmermann 

2009; Barua et al. 2013), financial and social costs (Dickman 2010; Kansky and Knight 2014; 

Lozano et al. 2019), techniques to reduce livestock depredation (Inskip and Zimmermann 2009; 

Miller et al. 2016; Eklund et al. 2017; van Eeden et al. 2018; Petracca et al. 2019), and measures 

to facilitate coexistence (Dickman et al. 2011). Many authors have pointed to the glaring absence 

of attention to potential scaling issues when attempting to draw inference on carnivore conflict 

across disparate studies (Nyhus 2016; Montgomery et al. 2018). Yet, despite a proliferation of 

several hundred publications on human-carnivore conflict since the 1990s (Ugarte et al. 2019; 

Khorozyan and Waltert 2021), potential scaling relationships remain unresolved. 

Improper consideration of the scale-dependent nature of ecological processes may hinder 

predictive capacity for targeted conservation action (Wiens 1989; Menge and Olson 1990; Levin 

1992). Predator-prey dynamics, as well as patterns of human-wildlife conflict, depend on 

whether they are observed at relatively fine or broad scales (Odden et al. 2008, 2013; Chetri et al. 

2019; Buchholtz et al. 2020). Yet, relationships between reported rates of livestock depredation 

and spatiotemporal scale have not been well considered (Nyhus 2016). Uncovering the 

relationship between scale and human-carnivore conflict metrics may allow for better 
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aggregation of observations collected at fine spatial scales, and across diverse temporal extents 

and resolutions, to better inform effective policies and targeted management actions typically 

undertaken at larger spatiotemporal scales (Dixon Hamil et al. 2016). Without consideration of 

scale, inferences regarding conflict hotspots, magnitude, and mitigation effectiveness may well 

be muddied, interfering with effective conservation action. The outcomes of every natural 

phenomenon, including disturbance (Hamer and Hill 2000; Dumbrell et al. 2008), habitat 

selection (Orians and Wittenberger 1991; Mayor et al. 2009), animal movement (Frair et al. 

2005), and interspecific interactions (Fauchald et al. 2000) depend fundamentally on the 

spatiotemporal scales at which they are considered. Spatiotemporal context matters given that 

ecological systems are the product of multiple processes operating at different hierarchical 

levels, e.g., geomorphological, climatic, and anthropogenic processes (Kotliar and Wiens 1990; 

Turner and Gardner 2015).  

Many ecological studies have demonstrated non-linear relationships between scale and 

observation (Wiens 1989; Rastetter et al. 1992; Wu et al. 2002; Wu 2004; Mayor and Schaefer 

2005), challenging the comparison of observations made at one scale to those made at other 

scales. Generally, making predictions is most difficult at intermediate scales, where top-down 

and bottom-up factors interact (Newman et al. 2019). Moreover, patterns of correlation between 

two variables may only be evident at one particular scale, as has been observed with 

environmental conditions and vegetation composition (Reed et al. 1993; Schaefer and Messier 

1995). Scale can be specifically decomposed into extent and resolution; extent being the size 

(spatial) or duration (temporal) of a study, whereas resolution is the minimum mapping unit or 

sampling unit expressed in terms of space or time (Turner and Gardner 2015). Generally 

speaking, decreasing resolution while holding extent constant results in a clearer pattern between 
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two variables because fine-scale variations in the process of interest are averaged away over 

larger resolutions (Reed et al. 1993; Wu et al. 2000). By contrast, the ramifications of changing 

extent while holding resolution constant are less clear because more heterogeneity both from the 

variable of interest and the surrounding environment will be included (Reed et al. 1993; Wu et al. 

2002; Wu 2004). Typically, increases in extent often accompany, perhaps by necessity, increases 

in resolution. It is possible to identify characteristic scales at which processes operate, resulting 

in generally repetitious patterns to emerge at regular time intervals (Loucks 1970; Wu and 

Loucks 1995). Moreover, it is possible to map a scaling relationship that enables more effective 

comparison of outcomes measured on different scales as well as extrapolation among scales of 

observation (Newman et al. 2019). 

While the relationship between scaling dimensions and human-carnivore conflict metrics 

has been assessed for single species or specific regions, such as brown bear in the French 

Pyrenees (Gastineau et al. 2019) or within the Yellowstone Ecosystem (Wells et al. 2019), it is 

unknown how robust those scaling relations are globally or across other species assemblages. 

With broader-scale and multi-species considerations, we would expect non-linear relationships 

and interactions among drivers to become important, as well as greater variation in the 

magnitude of conflicts observed, making prediction more challenging (Wu et al. 2000; Baruch-

Mordo et al. 2008; Wells et al. 2019). For instance, uncertainty regarding the presence of conflict 

hotspots, defined as locations with disproportionately frequent attacks due to surrounding 

landscape features (Miller 2015), is greater at finer versus broader spatial extents, which could 

reflect differences in sizes of grazing pastures or carnivore habitat quality (Baruch-Mordo et al. 

2008; Gastineau et al. 2019). Locations of hotspots remain fairly stable within years and across 

longer study durations, although uncertainty may be high in the numbers of animals killed 
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among years (Baruch-Mordo et al. 2008; Gastineau et al. 2019). Total numbers of animals killed 

has also proven more unpredictable with increasing spatial extent, which might reflect 

heterogeneity in spatial associations of carnivores with livestock across the landscape (Wells et 

al. 2019). Determining whether mismatches in scale confound detection of patterns 

(Montgomery et al. 2018), or lead to biased insights, should enhance our ability to effectively 

assess and implement management techniques aimed at reducing livestock deaths by predators.  

Herein, I explicitly investigate how common measures of conflict, as reported in the 

published literature, vary globally with increasing spatial and temporal scale. To achieve this, I 

conducted a literature review of existing livestock depredation data from carnivores worldwide, 

restricting my search to felids, canids, ursids, and mustelids. From this body of literature, I 

extracted conflict metrics and recorded or inferred the spatiotemporal scale of observation. 

Ultimately, I regressed these metrics against spatial or temporal extent and resolution while 

controlling for human population density and body mass of the largest carnivore involved, given 

evidence that these variables are positively correlated with conflict (Woodroffe 2000; Ugarte et 

al. 2019).  

 

METHODS 

I searched Web of Science, from 1985 through January 2022, for peer-reviewed papers reporting 

livestock loss to carnivores. Search criteria included Title = (carnivore* OR mammal* OR 

predator* OR felid* OR canid* OR ursid* OR hyaena OR lion* OR hyena* OR bear* OR 

jaguar* OR leopard* OR tiger* OR wolf OR wolves OR wild dog* OR lynx OR cougar* OR 

puma* OR coyote*) AND Title = (depredation OR livestock OR conflict* OR human* 

landscape OR human-wildlife conflict OR human-carnivore conflict), which resulted in 1,009 
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papers. I restricted results to the subject areas of Ecology, Zoology, Biodiversity Conservation, 

Environmental Sciences, Veterinary Sciences, Multidisciplinary Sciences, Genetics Heredity, 

Behavioral Sciences, Geography Physical, Biology, Agriculture Dairy Animal Science, 

Geosciences Multidisciplinary, Environmental Studies, Sociology, Evolutionary Biology, and 

Geography, yielding a total of 888 papers. I further excluded papers that did not distinguish 

livestock depredation from other instances of conflict (e.g., raiding trash cans, behaving 

aggressively toward humans or pets, human injuries), literature reviews in lieu of original 

research, and those focused on predator diet composition rather than conflict rates. Lastly, to be 

included in this study, authors needed to have reported metrics of depredation that could be 

converted into a common currency across studies as described below.  

There are three commonly reported currencies of predation rate: percent annual loss of 

stock (hereafter, %loss), total number of attack incidents across the entire study (#attacks), and 

total number of animals killed across the entire study (#kills) (Mishra 1997; Conner et al. 1998; 

Kaartinen et al. 2009; Thorn et al. 2012; Amador-Alcalá et al. 2013; Guerisoli et al. 2017). I 

included all papers that provided the necessary data to calculate these metrics when they were 

not directly reported. Calculating %loss necessitated data on the total number of animals killed 

together with the total size of the herd, whereas the other metrics required knowledge of the total 

number of either attack incidents or animals killed. In addition to recording depredation data, I 

noted the spatial and temporal extents and resolutions at which data were collected. Spatial 

extent was defined as the total study area in km2, while resolution (km2) was the finest sampling 

unit at which depredation data were recorded, often at the level of individual farms, pastures, or 

management units. Temporal extent was defined as the study duration in years, while resolution 

defined the regular intervals (typically months) at which data were recorded within the study.  
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My initial intent was to have two metrics (%loss and #kills), however because many 

studies reported only the number of attack incidents (#attacks) as opposed to raw totals of 

animals killed, I categorized these metrics separately. Nonetheless, I did not expect there to be 

inherent differences in scaling relationships between #kills and #attacks, given that #attacks is 

equivalent to a minimum number of total animals killed. I predicted that #kills and #attacks 

would increase linearly with both space and time, while plateauing at the broadest spatial scales. 

This latter expectation was based on the nature of herding livestock within concentrated areas, 

leaving surrounding regions with few individuals to be taken (Stahl et al. 2001; Rosas-Rosas et 

al. 2008). Moreover, I predicted that while %loss would not change within the temporal 

dimension (because it represents an annual proportion), it too should saturate or decrease at 

broader spatial scales. The latter expectation is predicated on the assumption that there would be 

more livestock overall on the landscape yet a proportionally smaller number of individuals being 

killed due to the uneven distribution of attacks across the landscape (Stahl et al. 2001; Gastineau 

et al. 2019). Additionally, scaling laws might be affected by other determinants. The relationship 

between temporal duration and observations of conflict might depend on the size of a study area 

(i.e., temporal x spatial extent interaction) due to differences in land use, number of livestock, 

and wild prey availability, among other factors (Odden et al. 2013; Chetri et al. 2019; Mukeka et 

al. 2019; Wilkinson et al. 2020). Also, higher human densities could increase conflict because of 

greater interactions between carnivores and livestock (Mukeka et al. 2019) while larger-bodied 

predators might kill more livestock than smaller species (Ugarte et al. 2019) with their differing 

patterns of space use affecting scaling relationships across space and time. 

I used multi-variable regression models to explore how depredation observations might 

vary by spatiotemporal extent and resolution while controlling for predator body size (Ugarte et 
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al. 2019) and human population density (Woodroffe 2000; Harcourt et al. 2001; Ogada et al. 

2003). For each reported study site, I extracted human population density (people/km2) using 

Google Earth Engine (https://sedac.ciesin.columbia.edu/) (Woodroffe 2000; Harcourt et al. 2001; 

Ogada et al. 2003). Although studies reported depredating species without reporting specific 

body sizes, I based adult masses on Jones et al. (2009), and lumped predator species into body 

size categories as “large” (>100 kg; ursids, tigers [Panthera tigris], and lions [Panthera leo]), 

“medium” (50 – 100 kg; smaller felids and hyaenids), and “small” (<50 kg; primarily canids and 

lynx [Lynx lynx]). I included the largest size class (as reported by authors) as an indicator 

category when fitting regression models. Continuous explanatory variables (population density 

and scale variables) were centered and scaled prior to model fitting (Breiman and Friedman 

1997). The dependent variables #attacks and #kills were log transformed to achieve a normal 

distribution, and models were fit using a gaussian distribution of error. The response %loss did 

not require transformation a priori, but a disproportionately high number of observations at low 

%loss necessitated using a gamma distribution with log link. Lastly, I included a random effect 

of continent to account for global ecological and socioeconomic differences in systems of 

human-wildlife interactions (Lozano et al. 2019).  

The most informative set of covariates was identified using Akaike’s Information 

Criterion (AIC; Akaike 1987), with model selection uncertainty identified where ∆AICc < 2. All 

models included carnivore body size (categorical) and human density (continuous) to control for 

their effects, including the null model (Appendices 1.1a & 1.1b). Candidate models individually 

included spatial extent, temporal extent, spatial resolution, and temporal resolution, as well as 

combinations of both spatial and temporal extent (with and without an interaction) within the 

same models. I was unable to combine spatial and temporal resolution within a single model due 

https://sedac.ciesin.columbia.edu/
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to data limitations. Models further compared spatiotemporal covariates as either linear (x) or 

non-linear terms (x+x2) to allow relationships to plateau or change direction with increasing 

scale. Lastly, some models included hypothesized two-way interactions between spatiotemporal 

variables and the two control variables (carnivore body size and human density) to assess 

whether scaling relationships were dependent on these factors.  

 

RESULTS 

From 606 published articles meeting my search criteria, I was able to sufficiently infer data on 

spatiotemporal scale and conflict metrics from 213 (35%). These represented five continents 

involving 17 carnivore species (Figure 1.1). Half of studies across all three conflict metrics 

involved carnivores over 100 kg, whereas a third focused on species less than 50 kg. Studies on 

%loss and #kills were most common in Asia (35% and 41%, respectively), whereas #attacks was 

mostly reported in North America (35%). The continental variable did not explain any variation 

in the models. 

Top models across all three conflict metrics included spatial or temporal variables, 

showing clear improvement over the null model with the inclusion of scaling effects (ΔAICc 

over null model ≥5.2; Table 1.1). The top models for #attacks and #kills each included temporal 

extent, while the top model for %loss included both spatial and temporal extent (Table 1.1). For 

%loss the top model (including an interaction between spatial and temporal extent) carried 60% 

of the AICc weight, while a more complex model with additional interactions between spatial 

extent and the two control variables was also a competitor (Appendix 1.2a). Partial slopes 

indicated that %loss decreased with increasing spatial (Figure 1.2) and temporal (Figure 1.3) 

extent, with the slope for spatial extent being slightly ameliorated by increasing temporal extent. 
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While scaling variables were important in terms of AIC, I was unable to estimate statistically 

significant effects for any variables.   

For #kills the single top model included human density, temporal extent, and an 

interaction between temporal extent and carnivore body mass (Table 1.1, Appendix 1.2b). 

Log(#kills) was greatest for species having body mass in the 50 – 100 kg range, being 

significantly greater than the largest body mass category (Table 1.2). Log(#kills) increased with 

greater temporal extent, with the steepest slope observed for mid-sized carnivores (Figure 1.3).   

Of four competing models for #attacks, two accounted for 50% of the weight (Appendix 

1.2c), and these included an interaction between temporal extent and human density or quadratic 

effects of spatial extent and human density. In the top model, log(#attacks) increased with 

increasing temporal extent, notably so in areas of higher human population density (Figure 1.3). 

The competing model (ΔAICc = 0.1 compared to the top model) indicated a concave relationship 

between spatial extent and log(#attacks) (Figure 1.2), an effect that was not statistically 

significant. The other two competing models included either a quadratic effect of temporal extent 

or an interaction between spatial and temporal extent. The only statistically significant effect was 

temporal extent and its interaction with human density in the top model (Table 1.1). This 

indicates that more attack incidents occur across longer time periods at higher versus lower 

human densities. 

In considering the effects of spatial resolution versus extent, I became data limited with 

only 16 or 17 data points per conflict metric. Thus, I was unable to run a separate model 

selection exercise for spatial resolution. Data were also sparser for temporal resolution, albeit 

less so ranging from 37-77 data points per conflict metric. Model selection for temporal 

resolution indicated a generally increasing trend between temporal resolution and all three 
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conflict metrics (Figure 1.4, Appendix 1.3a), with temporal resolution being retained in the top 

models for %loss and log(#attacks; Appendix 1.3c) although none of these effects proved 

statistically significant given α = 0.05. Covariates affecting log(#kills) proved the most 

ambiguous with all models containing spatial or temporal covariates falling within 2 AICc units 

of each other, and all of them being better than the null model by more than 2 units of AICc 

(Appendix 1.3b). Overall, this model selection exercise corroborated the previous effort, 

indicating that spatial and temporal extent are important considerations when comparing conflict 

metrics across studies even though the relationships remain noisy.  

Ultimately, residuals were normally distributed across the top models for all metrics, 

indicating appropriate model fit (Appendix 1.4). 

 

DISCUSSION 

Ecologists have long demonstrated how ecological patterns and processes can change over space 

and time, and that the window through which we record outcomes affects the inferences gained 

(Turner and Gardner 2015). Despite calls for more explicit consideration of scale from authors 

attempting to synthesize the human-carnivore conflict literature (Nyhus 2016; Montgomery et al. 

2018), to my knowledge this is the first attempt to comprehensively map out globally-relevant 

scaling relationships. Using three common metrics depicting severity of conflict (percent loss of 

stock, number of animals killed, and number of attack incidents), I observed strong support for 

models including the effects of spatial or temporal extent of the study, as well as temporal 

resolution, indicating that the spatiotemporal scale of observation is important to the observed 

conflict outcomes. And although these effects were largely linear, which makes for easier 

interpretation of scaling relationships, in all cases scaling effects were modulated through 
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interactions either with each other (e.g., spatial × temporal extent) or in combination with 

carnivore body size or human population density. Given highly noisy relationships, stemming in 

part from the inclusion of multiple livestock and predator types in the same model (using the 

largest reported body size from the suite of potential predators in a study), imprecise 

specifications of conflict metrics (deduced from reports), and incomplete reporting of scale 

dimensions by study authors, it was not surprising that the estimated effects for scaling 

relationships mostly failed to achieve statistical significance. Nevertheless, the scaling trends 

were compelling, consistent with expectations, and have implications for gaining inference on 

hotspots of conflict as well as the major drivers of human-carnivore conflict.   

 The positive relationship observed between spatiotemporal extent and number of 

observed events (attack incidents or animals killed) was expected given that broader extents will 

likely contain greater numbers of livestock and predators while longer time periods put animals 

at greater cumulative risk of a predation encounter (Baruch-Mordo et al. 2008; Gastineau et al. 

2019; Wells et al. 2019). The potential non-linear response observed for number of attack 

incidents, which peaked at intermediate spatiotemporal scales, likely stemmed from increasing 

landscape heterogeneity with further increases in scale, such as country-level differences in 

biomes, human infrastructure and population size, carnivore species, number of livestock, and 

patchiness of livestock operations (Kaczensky 1999; Wilkinson et al. 2020; Zimmermann et al. 

2021; Göttert and Starik 2022). The negative association between spatiotemporal extent and 

percent annual loss of stock could in part be attributed to the nature of herding livestock. For 

example, within a fine extent (a given ranch), there could be a single herd and therefore a higher 

%loss than if that proportion was quantified across an entire country where vast areas of land 

may hold no livestock (Stahl et al. 2001; Rosas-Rosas et al. 2008). Moreover, it is unexpected 
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that %loss should decrease with longer time periods unless differences exist across studies in 

husbandry or the ecological state, such as in predator richness or wild prey abundance (Guerisoli 

et al. 2017; Suryawanshi et al. 2017; Chaka et al. 2021). The negative trend I observed might 

also be associated with my methodology; where not explicitly given, %loss was determined by 

first dividing total numbers of animals killed across the entire period into average herd size 

across the years, and then into the study duration. This approach assumed herd size remained 

constant over time, which may not hold true (Patterson et al. 2004). 

The number of depredation observations is generally more variable at increasingly broad 

resolutions due to heterogeneity within the landscape, and because variance of counts increases 

with the mean. Such heterogeneity is in part caused by natural geographic variation, but also 

heavily influenced by human presence and land use (Acharya et al. 2017; Wilkinson et al. 2020). 

These factors alter habitat composition and arrangement (Acharya et al. 2017), wild prey 

availability (Odden et al. 2013), distance to human infrastructure (Sharma et al. 2020), and 

livestock accessibility to predators (Kuiper et al. 2022), features that in turn influence the 

direction and magnitude of conflict depending on the predator species involved and husbandry 

practices in place (Rostro-García et al. 2016; Khorozyan and Waltert 2021). By contrast, 

relationships between conflict and its drivers are generally more precise and predictable at finer 

spatial grains (Miller et al. 2015; Fowler et al. 2019), and at finer temporal resolutions that 

correspond to seasonal differences (e.g., spring, summer, fall, and winter; wet versus dry) 

(Patterson et al. 2004; Sangay and Vernes 2008). The lack of proper specification of resolution in 

most studies stymied my ability to detect meaningful patterns. Moreover, although there are 

ecological grounds to suspect heteroscedasticity in the data based on the biophysical landscape, 
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husbandry practices, and predator species involved (Miller 2015; Miller et al. 2015; Broekhuis et 

al. 2017), the low sample sizes prohibited me from exploring that to any great detail. 

 I attempted to control for variation in human density when illuminating scaling 

relationships, yet at a global level human density does not necessarily equate to more livestock 

depredated because effective management practices (e.g., well-maintained fencing and livestock 

guarding) might be in place (Ogada et al. 2003; Graham et al. 2005; Weise et al. 2018). Predator 

populations are also generally lower in areas with high human density (Woodroffe 2000), 

although most conflict occurs near protected areas where large carnivores remain at higher 

numbers than the surrounding matrix (Madden 2004; Nyhus 2016). Thus, human density might 

explain more variation as a covariate if this study were repeated at finer scales in more 

homogeneous conditions, for instance within one country, county, or region (Rostro-García et al. 

2016; Fowler et al. 2019; Mukeka et al. 2019). 

I further attempted to control for predator body size by considering the largest species 

involved (as reported by authors) given that some studies pool livestock killed across all predator 

species. The largest carnivore however might not necessarily be the most damaging. For 

instance, in parts of Africa, lions are frequently blamed for livestock deaths even though smaller-

bodied hyenas are the primary depredators (Kissui et al. 2019). The same holds true in Nepal, 

where snow leopards kill more yak and horses than the larger brown bear (Chetri et al. 2019). 

Within Bhutan, leopards often take more animals than tigers (Sangay and Vernes 2008). Such 

examples may explain why carnivore body mass in the 50 – 100 kg range displayed a significant 

trend with #kills as compared to predators over 100 kg. Splitting depredation by predator and 

livestock species would create a more robust picture of scaling relations between conflict and 
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body mass, but again to investigate patterns in spatiotemporal scaling relationships by predator 

species requires that more studies effectively report their scale of investigation. 

Despite my robust model selection exercise, and the detection of some statistically 

significant relationships, wide variation in my results especially at broader scales warrants 

further research on drivers of the unexplained variation. Specifically, husbandry could be 

incorporated in a common currency of comparison (van Eeden et al. 2018; Khorozyan and 

Waltert 2021) provided it is consistently reported. Moreover, the relationship between conflict 

and scale may prove more informative for individual carnivore species because drivers of risk, 

specifically biophysical features, vary across predator species (Miller 2015). For example, 

extrapolating the number of livestock killed within enclosures in open areas to a regional level 

would underestimate the magnitude if other villages were more enclosed in dense habitat, ideal 

for stalking predators, or implemented weaker fencing (Broekhuis et al. 2017; Weise et al. 2018). 

One approach by which to consider these interplaying factors, and to decipher the underlying 

relationship between two variables regardless of confounding variables, is by using mixed-

effects models (Dixon Hamil et al. 2016). Random effects can account for unexplained spatial 

heterogeneity across the region where extrapolation is warranted, including when the 

confounding variable is unknown, by using proxies that represent generally homogeneous 

conditions (Dixon Hamil et al. 2016). I used continent as a random effect, though this variable 

did not account for any of the variation in the models across my metrics, suggesting that finer-

scale factors like countries or biomes might account for additional heterogeneity. Such an 

analysis however would warrant larger sample sizes across each level of the random effect than I 

was able to achieve herein. 
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My findings suggest that observations of livestock depredation by carnivores are scale-

dependent to some extent at a global level, specifically regarding study duration, and exhibit 

generally linear albeit noisy relationships, depending on how conflict is measured. 

Understanding scaling relationships informs aggregations of observations collected across 

different extents and resolutions, as well as where aggregation might be unfeasible due to high 

extrapolation uncertainty (Dixon Hamil et al. 2016; Newman et al. 2019). Thus, fertile areas of 

research to build on these results include elucidating which drivers significantly influence 

depredation at given scales, and how these relationships in turn affect conflict and associated 

mitigation at lower or higher levels of the system (Nyhus 2016; Montgomery et al. 2018; Fowler 

et al. 2019). Given that few studies have assessed scaling relationships for carnivore conflict 

within a system (Gastineau et al. 2019; Wells et al. 2019), and until now none have quantified 

scaling relationships across diverse socioecological contexts, it is clear that greater effort is 

needed to reveal the underlying drivers of scaling power laws, clarify patterns, and elucidate 

which drivers are relevant to predicting conflict regardless of the spatiotemporal scale of data 

collection (Wu 2004).  

Moving forward, I concur with Nyhus (2016) on the use of standardized conflict metrics, 

such as the total numbers of animals killed, total herd sizes each year, and the proportion of the 

study area that these data represent, to remove some of the uncertainty surrounding such 

common metrics when attempting to draw inferences across disparate studies. Moreover, a major 

limitation in this work was the quality of the data, which constrained my ability to deduce spatial 

and temporal dimensions of a given study. The great majority of studies failed to report either 

spatial or temporal resolution, eliminating ~65% of the published conflict literature from 

consideration herein. Spatial extent, being the study area boundary, is the simplest measure to 
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report and was mentioned in around 90% of publications that I retained. Temporal extent was 

simply the duration of the study, which was also nearly always reported. In terms of variability, 

the spatial extent proved less variable among geographic regions than temporal extent, with 

developed regions conducting longer-term research (Appendices 1.5a & 1.5b). Data deficiencies 

were most apparent when considering resolution. As a result, authors can make their studies 

more useful for future meta-analyses by explicitly stating spatiotemporal dimensions. For spatial 

extent authors should clearly report the area over which their observations took place, and for 

spatial resolution, it should be clear what the minimum mapping unit or finest level of sampling 

was for recording conflict metrics (e.g., if records were made at the herd level, then report size of 

the herd as well the spatial extent over which they free roamed; if at the level of a township, state 

the extent of the township as well as the number and size of the herds sampled therein). For 

temporal dimensions, authors should report the total study duration as well as the finest sampling 

intervals, typically months, at which data are collected and reported across the study. With 

consistent reporting of conflict metrics, and effective control over scaling effects, the 

manageable drivers of human-carnivore conflict may then come into sharper focus.     
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TABLES: CHAPTER 1 

Table 1.1. AIC model comparison of candidate models predicting percent annual loss (%loss; N 

= 76), number of animals killed (#kills; N = 111), and number of depredation incidents (#attacks; 

N = 62). Main effects and interactions included in each model are indicated, along with linear (x) 

or quadratic fits as appropriate. Total number of parameters (K) is shown along with ∆AIC 

values for each model, with models contributing to model selection uncertainty indicated in 

bold. 
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%loss #kills #attacks 

Spatial × 

temporal 

x x x x x     8 0.0 10.8 1.8 

Full linear x x x x x x x   11 1.5 12.7 - 

Spatial 

linear 

x  x x      6 5.7 14.2 7.1 

Spatial × 

HD 

x  x x  x    7 5.8 16.2 9.5 

Spatial 

nonlinear 

x, 

x2 

 x x      7 7.2 13.9 4.2 

Full 

nonlinear 

x, 

x2 

x, 

x2 

x, 

x2 

x x x x   14 7.8 14.0 - 

Spatial × 

CM 

x  x x   x   8 8.9 14.5 9.4 

Spatial 

nonlinear + 

HD 

nonlinear 

x, 

x2 

 x, 

x2 

x      8 9.6 14.2 0.1 

Temporal 

linear 

 x x x      6 97.0 8.4 3.0 

Temporal 

nonlinear 

 x, 

x2 

x x      7 98.0 5.9 2.4 

Temporal × 

HD 

 x x x    x  7 99.0 9.2 0.0 
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Temporal × 

CM 

 x x x     x 8 99.0 0.0 8.1 

Temp. 

nonlinear + 

HD 

nonlinear 

 x, 

x2 

x, 

x2 

x      8 100.4 6.4 0.4 

Null   x x      5 102.0 13.3 5.2 
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Table 1.2. Parameter estimates (β) with standard errors (SE) for the most parsimonious models 

predicting the three metrics of conflict (percent annual loss [%loss], number of animals killed 

[#kills], and number of attack incidents [#attacks]). Except for the categorical carnivore body 

mass, all covariates were centered and scaled prior to model fitting. Prior to model fitting #kills 

and #attacks were log-transformed. Those variables whose confidence intervals exclude zero are 

indicated by *. Dashes (-) indicate the variable was not included in any competing models. 

 %loss (N = 76) #kills (N = 111) #attacks (N = 62) 

 Estimate Standard 

Error 

Estimate Standard 

Error 

Estimate Standard 

Error 

Intercept 1.2781 0.2000 5.6939 0.5921 5.9665 0.2902 

Human Density ̶0.05716 0.1616 ̶0.09209 0.1485 0.2212 0.2641 

Carnivore Mass 

(50 – 100 kg) 

̶0.1104 0.3238 1.6338 0.5822* ̶0.2552 0.6210 

Carnivore Mass 

(<50 kg) 

̶0.1065 0.3065 ̶0.4132 0.3514 ̶0.3059 0.4111 

Spatial extent ̶0.2321 0.1537 - - - - 

Temporal extent ̶0.2759 0.1538 0.2106 0.1682 0.6805 0.2215* 

Spatial × Temporal 0.4395 0.3641 - - - - 

Carnivore Mass 

(50 – 100 kg)  

×Temporal extent 

- - 2.2447 0.6016* - - 

Carnivore Mass 

(<50 kg) 

×Temporal extent 

- - 0.4869 0.4238 - - 

Human Density 

×Temporal extent 

- - - - 0.9093 0.3732* 
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FIGURES: CHAPTER 1 

 

Figure 1.1. Global distribution of studies assessing livestock depredation by carnivores from a 

literature review of 213 peer-reviewed articles. Circle size demonstrates the local density of 

studies, specifically the number of studies whose location centers fell within a 100-km radius.  

 

 

 

 

 

 



 24 

 

Figure 1.2. Predicted relationships between spatial extent and %loss, log(#kills), and 

log(#attacks) from the single top models.  
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Figure 1.3. Predicted relationships between temporal extent and %loss, log(#kills), and 

log(#attacks) from the single top models. 
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Figure 1.4. Predicted relationship between the three metrics of conflict and temporal resolution 

from the single top models after controlling for human density and carnivore body mass. The y-

axis for number of animals and incidents is log transformed. 
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CHAPTER 2: Spatially explicit estimates of global population potential for leopard 

(Panthera pardus) 

ABSTRACT 

Although many studies have assessed local densities of threatened carnivore species, few have 

synthesized existing data into range-wide estimates based on habitat potential. Identifying where 

observed densities differ greatly from potential carrying capacity may better focus conservation 

attention. Herein, I related published leopard density estimates (N=136) to hypothesized drivers 

(e.g., gross primary productivity, human density) to produce a spatially explicit estimate of 

potential density throughout their geographic range spanning far-eastern Russia to southern 

Africa. I used AIC to identify the top model from 19 candidates that included anthropogenic and 

environmental drivers, alternative scales of analysis, linear and non-linear effects, and study 

design effects. Leopard density was negatively associated with human density and cropland and 

urban landscapes relative to open forest. By contrast, leopard density was positively related to 

temperature and primary productivity. The model explained 38% of variation in leopard density 

and estimated a potential for 355,000 leopards across their range. Although prediction certainty 

appeared greatest in areas predicted to house the most leopard, e.g., equatorial Africa and 

northern India, some of these areas also coincided with known low leopard numbers (due to 

human persecution) that I was unable to account for. Fine-scale variables and historical legacies 

of armed conflict that have depleted biodiversity need to be considered when evaluating 

contemporary leopard status, but my models may indicate population potential and where 

conservation action may prove most rewarding.  
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INTRODUCTION 

Species around the world are threatened with extinction from a variety of factors, including 

habitat loss, overexploitation, and invasive species (Tilman et al. 2017). Data on species status 

informs conservation action (Nichols and Williams 2006), and involves two related but distinct 

aspects. First, patterns of species occurrence or site occupancy define species distributions. 

Monitoring changes in the geographic range of a species, especially contractions in range, 

remains fundamental to inferring species vulnerability to extinction and focusing conservation 

effort. Yet occurrence patterns alone are insufficient to ensure species persistence as the 

probability of site occupancy may remain constant despite an order of magnitude decline in 

overall species abundance (Ellis et al. 2014). The second piece of important information on 

species status is population density. Although generally positive (Holt et al. 2002), the 

relationship between site occupancy and species density is not always linear or clear (Gaston et 

al. 2000; Ellis et al. 2014). Hence, for rare and at-risk species, abundance estimates become 

critically important for monitoring conservation status (Gaston and Fuller 2009; Jones 2011) and 

establishing target recovery goals (Johnston et al. 2015; Loveridge et al. 2022a).  

Globally, large mammals and notably large carnivores have suffered large-scale 

contractions of geographic range in addition to reductions in local abundance (Woodroffe 2000; 

Wolf and Ripple 2017). Considerable conservation and research effort has been extended to large 

carnivores, yielding an inordinately large number of published occupancy and abundance studies 

relative to smaller mammals (Srivathsa et al. 2022). The majority of studies have been conducted 

at the scale of individual protected areas, provinces, or countries to inform relatively fine-scale 

management for park or state authorities (Hebblewhite et al. 2011; Ellis et al. 2014; Wang et al. 

2018; Havmøller et al. 2019; Gebretensae and Kebede 2022). Taken collectively, these disparate 
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studies may provide a means of evaluating range-wide habitat drivers of species abundance. For 

example, Jȩdrzejewski et al. (2018) extracted estimates of site occupancy and local density by 

jaguar (Panthera onca) from 117 published studies, and used those data to model range-wide 

jaguar distribution and density. Such range-wide estimates are useful for establishing baseline 

values against which future increases or declines can be compared, as well as prioritizing 

geographic regions in which conservation efforts may be most needed (Durant et al. 2007; 

Jacobson et al. 2016; Clavero et al. 2022; Loveridge et al. 2022a).  

Large carnivores are sensitive to human predations (Darimont et al. 2015; Oriol-Cotterill 

et al. 2015), yet live within increasingly human-dominated landscapes (Fahrig 2007; Kowalczyk 

et al. 2015). Although animals may be able to spatially avoid conflict where the overall imprint 

of human activities is low-moderate (Basille et al. 2013), and within landscapes providing 

refuges, at some point human domination and modification of the landscape will lead to habitat 

loss and higher levels of human-carnivore conflict. Single studies in a local geographic region 

fail to capture variation in broad-scale context over which a species’ resource selection patterns 

are driven, and thus can lead to confusion over globally relevant drivers of habitat quality for a 

species. Moreover, political boundaries will drive variation in human-exploitation patterns that 

may muddy the relationship between apparent habitat quality and animal abundance (Weber and 

Rabinowitz 1996; Nyhus 2016). As such, comprehensive modeling of species density across 

their range must focus on the most fundamental and globally relevant variables (e.g., relating to 

vegetation cover, prey base), consider that habitat relationships are likely to vary with scale of 

observation (Mayor et al. 2009) and, for widely distributed species, consider potential variation 

due to changes in ecological and political domains.      
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Following the approach used to model range-wide density for jaguar (Jȩdrzejewski et al. 

(2018), I modelled the density of leopard (Panthera pardus) across their range. By some 

estimates, leopard range has been reduced up to 75% (Jacobson et al. 2016). Leopard currently 

exist in fragmented and vulnerable populations throughout much of their range. Like jaguar, 

leopard exhibit a solitary and territorial nature that should facilitate density predictions. Yet, 

leopard are perhaps the most ecologically plastic species within the genus Panthera as they have 

the largest distribution of all wild cats – ranging from the Russian far-east to sub-Saharan Africa. 

As such, geographic context may drive patterns of leopard abundance beyond what we can 

account for with specific ecological covariates. Fortunately, the published literature on density 

estimates for leopard is large and geographically widespread (Balme et al. 2014; Jacobson et al. 

2016). Moreover, Jacobson et al. (2016) used existing data to map the distribution of individual 

leopard (Panthera pardus) subspecies across their range, providing a contemporary range map. 

Leopard density, however, has not been comprehensively modeled so as to determine habitat 

carrying capacity and therefrom infer potential leopard abundance in unsampled areas (Stein et 

al. 2020). The results of this work will therefore help 1) determine features that influence leopard 

populations range-wide, 2) identify regions of potentially high carrying capacity to prioritize 

conservation attention, and 3) clarify where future data collection efforts should be focused 

based on prediction uncertainties and lack of available estimates. 

 

METHODS 

I searched for published estimates of leopard density in Web of Science, Google Scholar, and the 

International Union for Conservation of Nature (IUCN) Cat Specialist Group database using the 

following search terms: leopard AND (densit* OR number*), and Panthera pardus AND (densit* 
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OR number*). I excluded studies that did not include density estimates, such as those reporting 

abundances solely without providing information sufficient to derive density with certainty, in 

addition to those reports solely focusing on species other than the common leopard (ex. clouded 

leopard Neofelis spp. or leopard cat Prionailurus bengalensis). I recorded point estimates for 

density, upper and lower confidence bounds, and type of capture-recapture analysis employed. 

Two common methods were reported: non-spatial versus spatial capture-recapture. Non-spatial 

analyses added a buffer around the trap array, equivalent to the mean or half of mean maximum 

distance moved (MMDM and HMMDM, respectively) by the species of interest, to account for 

effective area sampled (Karanth and Nichols 1998). For papers that provided both spatial and 

non-spatial estimates, I retained only the spatial estimates. Moreover, where both Bayesian and 

maximum likelihood approaches were reported, I retained the more conservative estimate of the 

two (mean observed difference in density = 0.01  0.68 SE, N = 21). If only non-spatial 

estimates were provided, I used MMDM estimates where available. HMMDM is known to 

generally overestimate density (Sharma et al. 2010). Thus, following Jȩdrzejewski et al. (2018), 

for those studies reporting both HMMDM and spatial density estimates I fit a line between the 

two enabling correction of HMMDM estimates in papers where they were solely reported. For 

studies that reported density estimates for multiple years, I retained the most recent estimate 

only.  

I built a spatial database within a Geographic Information System of leopard densities 

based on latitude and longitude coordinates of the center of each study location, either as directly 

provided in the paper or deduced from study area description. At each location I extracted 

environmental and anthropogenic covariates presumed to influence leopard densities. Covariates 

included human population density (Woodroffe 2000), human footprint index (Sanderson et al. 



 42 

2002), a binary variable indicating whether the study was in a protected area (PA; Rogan et al. 

2022), terrain ruggedness index (TRI; Riley et al. 1999; Rather et al. 2021), categorical land 

cover type (Rather et al. 2021; Loveridge et al. 2022b), mean forest canopy cover, the 

normalized difference water index (NDWI), and mean annual temperature and precipitation. 

With respect to protected areas, I excluded IUCN protection level categories V and VI because 

these have less strict measures of protection although I kept any area classified as “national park” 

or “national reserve” (Jacobson et al. 2016). I also included several indices of productivity that 

might affect prey biomass, specifically the enhanced and normalized difference vegetation 

indices (EVI and NDVI; Sims et al. 2006; Pettorelli et al. 2011; Searle et al. 2021), and gross and 

net primary productivities (GPP and NPP). I further included a binary variable indicating 

whether the study was in Africa or Asia to account for broad, continental-scale differences in 

drivers of leopard density (Woodroffe 2000; Jacobson et al. 2016). Originally, I also included 

latitude and longitude to account for broad geographic trends, however as neither of these 

variables improved model fit, they were excluded. With respect to land cover, I reclassified the 

original eight classes (see Appendix 2.1 for variable descriptions) into three categories based on 

those having similar effect sizes in initial models: 1) open forest and herbaceous (reference 

level), 2) dense forest and croplands, and 3) shrubland and urban. Mean annual temperature, 

precipitation, human density, and human footprint were directly downloaded from the web with 

the remaining data obtained via Google Earth Engine (Appendix 2.2). Temporal periods of data 

extraction generally corresponded to mean values across the range of years represented (1998 - 

2019). Raster layers were converted to the WGS 1984 World Mercator projection at a 1 km2 

resolution. At each record of leopard density covariates were extracted as the average value 

within five different buffer sizes: 1-, 5-, 10-, 15-, and 20-km radius (McGarigal et al. 2016; 
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Loveridge et al. 2022b). Leopards move an average distance of 1-km in six hours (McManus et 

al. 2021), and a 5-km buffer loosely corresponds to the minimum radius of a leopard’s home 

range (Simcharoen et al. 2008; Stein et al. 2011). The 10- and 15-km buffers therefore fall within 

expected home range diameter. The 20-km buffer captures broad-scale habitat selection behavior 

(Rather et al. 2020). I then screened for potential correlations among variables and removed from 

my candidate variables pairs of variables having Pearson r  0.70 (Dormann et al. 2013) to guard 

against multicollinearity. After testing correlated pairs of variables using univariate models, I 

removed the less informative from further consideration (thereby excluding mean forest canopy 

cover, NDVI, EVI, and NPP).  

All candidate models included four variables to control for potential design effects. First, 

following Mishra et al. (2017), I included the area sampled (km2) as either the minimum convex 

polygon (MCP; spatial analyses) or effective trapping area (non-spatial analyses, pertaining to 

the MCP plus a buffer). Second, following Noor et al. (2020), I included survey length as the 

number of study days (i.e., the maximum length of time during which any part of the trapping 

array was sampled given that splitting study areas into sections and rotating cameras throughout 

is a common practice). Third, following Rather et al. (2021), I included the number of camera 

trap sites (i.e., the number of stations as opposed to the number of individual cameras). Lastly, 

following Vinks et al. (2022), I included the number of trap nights as the number of individual 

cameras multiplied by the number of nights those cameras were operating. 

Prior to fitting models, I log-transformed leopard density and centered and scaled all 

continuous covariates. To determine the optimal scale for each predictor variable (McGarigal et 

al. 2016; Loveridge et al. 2022b), I regressed log(density) in turn against a given covariate 

expressed at each of the five scales while controlling for all other covariates (each included at the 
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10 km scale), compared the five resulting models using Akaike’s Information Criterion (AIC), 

and identified the optimal scale from the model yielding the lowest AIC value. Next, I tested for 

non-linearity in covariate effects by comparing models including linear terms to models 

containing quadratic terms using AIC (Rogan et al. 2022). After determining the optimal scale 

and form for each covariate, I compared plausible candidate models using AIC (Appendix 2.3). 

Plausible candidate models included a null model (containing the four design-based covariates 

only), a full model (all 12 covariates plus a quadratic term for temperature and GPP in addition 

to the design-based covariates), subsets of covariates specific to human impacts alone versus 

environmental conditions without human impacts, and the global model less each covariate in 

turn. If there were competing models (AIC < 2.0), I retained covariates that appeared in each of 

the competitors to obtain a final model. This model was then compared against the global model 

using AIC to determine whether excluding given covariates substantially improved fit. Having 

chosen my best model, I used 5-fold cross validation and the resulting coefficient of 

determination (R2) to validate model predictions using the trainControl function in R. 

The final model was projected across the known extant range of leopard as defined by the 

species’ IUCN Red List distribution map based on Jacobson et al. (2016). Prior to this 

extrapolation, data values within raster layers were truncated to match the range of values used 

during model fitting. Moreover, I masked predictions within three land cover classes (“barren,” 

“snow and ice,” and “water”) that did not occur in my training data and are known to be avoided 

by leopards (Gavashelishvili and Lukarevskiy 2008). To map density predictions, I first used the 

focal statistics tool in ArcMap to summarize each raster layer at the optimal scale as previously 

identified. Each 1-km2 cell was converted to a dataframe of points containing values for each 

covariate and then imported to R. Using the predict function in R, I applied the final model to the 
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dataframe to predict log(leopard density) with 95% confidence intervals resulting in three new 

dataframes (mean density, lower 95% confidence interval, and upper 95% confidence interval), 

which were converted to raster layers and imported to ArcGIS. These layers were exponentiated 

to convert back to the original density scale per 100 km2. Ultimately, following Jȩdrzejewski et 

al. (2018), I resampled the landscape to a 100 km2 resolution by averaging values across 1-km2 

cells, with the resulting grid representing local leopard abundance within each 100 km2 cell. I 

then summed cell values to estimate regional (e.g., country-wide) and range-wide potential 

population sizes. Lastly, I represented prediction uncertainty based on the standard errors of 

predictions. All analyses were conducted within program R 4.2.2 and ArcMap 10.8.1. 

 

RESULTS 

Of the 456 estimates of leopard density that I extracted from the published and grey literature, I 

retained 170 independent estimates meeting my selection criteria. Two-thirds of these came from 

the African continent, with South Africa most represented (N = 80, 70% of the African 

observations). The great majority of data (78%) stemmed from either maximum likelihood (N = 

65) or Bayesian (N = 68) based spatial capture-recapture approaches, while non-spatial methods 

comprised 22% (N = 37). Eighteen studies reported both spatial and non-spatial (HMMDM 

buffer) methods, which after removing one outlier based on high leverage, yielded a significant 

relationship (y = 0.83×non-spatial density – 0.22, R2 = 0.69, p < 0.01; Figure 2.1) used to correct 

HMMDM density estimates. Given missing values for several explanatory variables, my models 

were fitted to 136 data points. 

There were initially five competing top models (Models 2-6; Table 2.1), each of which 

included mean annual temperature (quadratic), GPP (quadratic), human density, NDWI, and land 
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cover (K=13 parameters total), indicating these to be the most influential covariates predicting 

leopard density range-wide. Protected areas, TRI, human footprint, precipitation, and the 

continental indicator variable did not consistently appear in top models, and excluding these five 

variables yielded a top model having AICc weight of 0.94 (Model 1; Table 2.1). Within this top 

model, the scale at which variables were optimally measured varied from 20-km radius for mean 

annual temperature and land cover, to 5-km radius for NDWI, and 1-km radius for both GPP and 

human density (Table 2.2). Leopard density was positively associated with NDWI, low to 

intermediate values of temperature and GPP (Figure 2.2), and greater amounts of open 

forest/herbaceous-dominated land cover. In contrast, leopard density declined with increasing 

human density, amounts of dense forest/cropland, and shrub/urban land cover. Of the variables 

included to account for design effects, only the area sampled had a statistically significant and 

negative effect (p < 0.01) on estimates of leopard density.  

Based on 5-fold cross validation, this model effectively explained only 38% of variation 

in leopard density (R2 = 0.38), indicating the lack of key local variables driving variation in 

leopard populations. Predictions ranged from 0-20 leopards/100 km2, whereas the highest 

reported density observed within the training dataset was 18 leopards/100 km2 in Mudumalai 

Tiger Reserve in India (Ramesh 2010). The model predicted the highest potential leopard 

densities in northern India and near equatorial Africa, the latter being an area where on-the-

ground data on leopard populations is particularly sparse (Figure 2.3A). Yet prediction 

uncertainty was greater in areas of lower rather than higher predicted leopard density (Figure 

2.3B).  

 

DISCUSSION 
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Leopard are one of the most broad-ranging and ecologically adaptable carnivore species, 

tolerating extreme variation across their range in terms of habitat and environmental conditions, 

and making efforts to predict their density range-wide challenging. Models including variables 

related to food, cover, and water limitations explained 38% of the variation in estimates of 

leopard density, surprisingly similar to the 45% of variation explained by Jȩdrzejewski et al. 

(2018) for jaguar across their considerably more narrow ecological range. Importantly, one 

should consider the model predictions herein as potential leopard abundance based on ecological 

conditions rather than estimates of current leopard status. Local variables such as the legacy of 

armed conflict that have depleted biodiversity (Dudley et al. 2002), and current efforts to control 

human-leopard conflict (Balme et al. 2009), will play a large role in determining contemporary 

leopard status and lead to potentially major discrepancies between model predictions based on 

habitat potential and how many leopards occur in a region. For this reason, density predictions 

(Figure 2.3) may best be interpreted through the lens of relative rather than absolute abundance. 

In terms of relative abundance, predictions of the highest potential leopard densities in northern 

India and lowest densities in eastern Asia, like China and Russia, are consistent with previous 

findings (Kalle et al. 2011; Vitkalova et al. 2018). However, predictions of high relative 

abundance in places like Angola (Table 2.3) may not reflect contemporary reality. Yet, in 

highlighting areas where discrepancies occur between potential and realized population sizes, 

this work may be useful for focusing conservation attention in areas where leopards need it most.    

Carnivore densities generally increase with measures of productivity such as NDWI and 

GPP due to a higher abundance and assimilation of prey (Woodroffe 2000; Carbone and 

Gittleman 2002; Valeix et al. 2010; Jȩdrzejewski et al. 2018), and typically decrease with higher 

human densities, patterns we observed here for leopard. In comparison to the reference level of 
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open forest and herbaceous, which reflect optimal leopard habitat in the form of savannas and 

associated open woodlands (Balme et al. 2007, 2019), I observed leopard densities to be lower 

with increased urbanization and in habitats interspersed with croplands. These latter variables 

reflect the human footprint and could be associated with poor habitat or persecution of large 

carnivores that engage in conflict with people (Constant et al. 2015; Mukeka et al. 2019). Rogan 

et al. (2022) found a negative association between human footprint and leopard density, whereas 

Loveridge et al. (2022b) documented a similar relationship with regard to snaring hotspots and 

risk of trophy hunting. As in this study, Loveridge et al. (2022b) also found lower leopard 

densities in shrubland-dominated habitats, which could reflect less tree cover and therefore a 

lower probability of a successful hunt (Balme et al. 2007). Further, whereas lower leopard 

densities in dense forest as opposed to open forest were unexpected in my study, this relationship 

could reflect lower catchability of prey in dense habitat and, therefore, a proclivity to disperse to 

habitats with higher prey accessibility (Balme et al. 2007). This conclusion is reinforced by 

leopard density being best predicted by open water (here reflected in NDWI) at the 5-km scale in 

this study, likely due to the high concentration of prey around open water sources (Valeix et al. 

2010). Alternatively, lower leopard densities in dense vs. open forest could be related to the 

broad-scale nature of this study and diversity of ecoregions represented.  

I estimated particularly high potential leopard densities in several areas where I lacked 

local estimates, notably near the equator within the Republic of the Congo (RC), Central African 

Republic (CAR), and Angola. Prediction uncertainty was generally low within these equatorial 

areas, probably because productivity is highest near the equator in the form of forests and 

woodlands (Ugbaje et al. 2017), providing optimal habitat, abundant prey, and consequently 

smaller leopard home ranges (Rodríguez-Recio et al. 2022). Nevertheless, central Africa also has 
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a history of civil unrest, with negative ramifications for large mammals (Dudley et al. 2002). 

Given my prediction of a high carrying capacity within the RC, CAR, and Angola, these 

countries represent an important potential focus for future leopard conservation, especially since 

they include some of the most apparently intact leopard range (Jacobson et al. 2016). Tanzania 

had the third highest estimate of potential leopard numbers (22,291 – 36,461 leopards; Table 

2.3), a potentially achievable carrying capacity given the presence of the Serengeti National Park 

(Allen et al. 2020). Prior work indicated ≥5-6 leopards/100 km2 in Tanzania (Allen et al. 2020; 

Searle et al. 2021), and disparities in predicted vs. actual leopard densities used in this study 

were <2 leopards/100 km2. Within Asia, I predicted the highest potential densities within the 

heavily protected forests bordering India, Bhutan, and Nepal, an observation consistent with 

previous work (Harihar et al. 2011; Goldberg et al. 2015). Differences in predicted vs. actual 

estimates in these countries were ~ 2 to 3 leopards/100 km2. Overall, I estimated Africa to have 

more leopards than Asia, and India to have the highest potential abundance of leopards on a 

country level. These results are consistent with Jacobson et al. (2016) who reported that three 

leopard subspecies compose 97% of extant leopard range, including the African (P. p. pardus) 

and Indian (P. p. fusca) subspecies.  

Generally, areas where I predicted low potential densities of leopard also corresponded 

with higher prediction errors and, therefore, increased prediction uncertainty. Within western 

South Africa, Botswana, and Namibia, my lower estimates mirror previous work that 

documented less than 1 individual/100 km2 in these regions after accounting for bias from non-

spatial methods (Stein et al. 2011; Devens et al. 2018). For instance, within Namibia, leopards 

respond to the presence of farmlands with larger home ranges and therefore lower densities 

(Marker and Dickman 2005). For the Middle East, low estimates are likely caused by small, 
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isolated populations and lack of transboundary conservation initiatives (Zafar-ul Islam et al. 

2018; Farhadinia et al. 2021). However, higher uncertainty also was observed within 

southwestern Africa and Middle Eastern countries, such as Iran, which could be caused by 

sparser data available in these regions with which to parameterize my models. Moreover, the 

estimates within the southwestern corner of South Africa were several orders of magnitude 

different from those in the northeastern part of the country, where abundant data exist, 

potentially inflating the standard error. Reported leopard densities vary from under 1 

individual/100 km2 near Cape Town (Devens et al. 2018) to over 10 individuals/100 km2 in the 

reserves near the east coast (Balme et al. 2010). Across South Africa model predictions differed 

from observed densities by up to 5 leopards/100 km2. Higher uncertainty likewise existed within 

the northeastern parts of the species’ range where the low predicted carrying capacity (158 – 

678) was expected given that the critically endangered Amur leopard (P. p. orientalis) has the 

lowest remaining extant range (Jacobson et al. 2016). Disparities between predicted vs. actual 

estimates in the northeast and Middle East were low, <1 leopard/100 km2.  

I estimated the global leopard population to potentially reach 355,000 individuals on 

average, an estimate we know to be biased high. A more accurate picture of global abundance 

will not be possible until additional research considers finer-scale factors influencing leopard 

abundance that were unavailable to this current modeling effort. Important local predictors likely 

include human activities (i.e., bushmeat poaching, trophy hunting, rebel activity, civil war; 

Dudley et al. 2002; Packer et al. 2011; Rosenblatt et al. 2016), non-lethal costs of human 

presence (Creel 2018), interference competition with large predators (i.e., tigers and lions; 

Steinmetz et al. 2013; du Preez et al. 2015; Loveridge et al. 2022b), habitat fragmentation 

(Crooks 2002; Swanepoel et al. 2013), spatial distribution of prey in response to seasonal shifts 
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(Mduma et al. 1999; Allen et al. 2020), and management to restrict human activities or improve 

habitat quality (Rosenblatt et al. 2016; Havmøller et al. 2019; Searle et al. 2021). Although it was 

not possible to include all these covariates in a range-wide comparison like this, my analysis 

uncovered landscape and environmental features that are broadly relevant to leopards and 

identifies regions of prediction uncertainty. I note that lack of data availability for the covariates 

I did include, specifically area sampled and number of camera trap sites, led to the exclusion of 

~20% of the data available for model fitting. Thus, within future work, consideration of the 

aforementioned factors could shed light on the underlying causes of potential bias and 

uncertainty when predicting leopard density. 

A few other limitations of this study bear consideration. First, nearly half my data points 

originated from South Africa and northern India, so I lacked sufficient representation of leopard 

populations and ecological conditions across their extant range. Moreover, much of the published 

data on leopard density occurred within protected areas (Balme et al. 2014). Although I 

attempted to account for protected areas within my models, this variable was excluded during 

AIC model selection. Indeed, leopards are highly adaptable predators that can maintain 

sustainable populations both within game reserves and in lands interspersed with farming areas 

and high levels of harvest (Chase Grey et al. 2013; Swanepoel et al. 2015). It is worth noting, 

though, that my definition of protected areas excluded lesser protected IUCN categories (V and 

VI), which might be unexpectedly intact (Leroux et al. 2010) and significantly influence 

carnivore abundances. Second, I pooled all leopard subspecies into a single analysis, although 

given their generalist nature, leopards might be differentially influenced by various habitat types 

depending on the continent on which they are found. For instance, in Thailand, leopards prefer 

mixed deciduous and dry evergreen forests (Simcharoen et al. 2008), whereas in South Africa, 
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leopards principally hunt in open bushvelds (Balme et al. 2007). Yet again, I incorporated an 

indicator variable for Africa and Asia to account for continental differences, although this 

variable also was excluded in model selection. Nevertheless, stark differences may even exist 

within a country or among similar habitat types. For example, in Tanzania, published leopard 

densities differed by >2 individuals/100 km2 within the same mixed-use landscape based on 

differences in woodland habitat and levels of protection (Searle et al. 2021). Given the uneven 

distribution of data geographically, I did not have sufficient data across all subspecies for finer 

regional analysis, nor did I have the power for continental or regional interactions with 

environmental covariates. Lastly, the timespan of my data is worth noting as it ranges from 1998 

– 2019 during which time human density and human-dominated habitat (variables that influence 

leopard density) have certainly changed.  

My study reflects the importance of landscape-scale conservation for the leopard albeit 

with fine-scale considerations for management. Leopards select for landscapes at broad scales 

(20 – 30 km) based on environmental conditions that reflect ideal habitat and abundant prey 

(Rather et al. 2020), but might select for features at fine spatial or temporal scales within those 

landscapes to track prey or avoid human settlements (Odden et al. 2014). In addition to 

conserving sufficient natural herbaceous and open forest habitat at the home range scale, 

management should therefore also consider ways by which leopards at finer scales might 

traverse around human settlements located within those landscapes, such as through maintaining 

connectivity between adjacent resourceful habitat patches (Llaneza et al. 2018; Suraci et al. 

2020). By identifying regions of potentially high leopard densities where data are lacking on 

contemporary leopard status, my work highlights where research attention is still needed. 

Focusing studies in areas like equatorial Africa can verify whether the habitat and socioeconomic 
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context are indeed of sufficient quality to support a large leopard population. Moreover, 

geographic regions with low predicted densities can clarify which subspecies need immediate 

conservation attention in the form of transboundary cooperation, reduction in poaching and 

illegal trade, and restoration of habitat connectivity. Additional work is also required in regions 

of high prediction uncertainty to determine fine-scale ecological or socioeconomic factors 

affecting that variation. This study presents a starting point for such future inquiries by 

identifying environmental and anthropogenic features that influence leopards range-wide, and 

provides baseline values of potential abundance to guide management and target recovery goals. 

Conservation attention should then be focused in areas where the disparity between predicted 

and actual densities is greatest. 
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TABLES: CHAPTER 2 

Table 2.1. AIC support for candidate models predicting log(number of leopards/100 km2), model 

definitions given in Appendix 2.3. Shown for each model is the number of parameters estimated 

(K), model log-likelihood (LL), ∆AIC values, and AIC weight. 

 

Model  K LL ∆AIC AIC Weight 

 

Global – PA, TRI, human footprint, 

precipitation, and continental indicator 

 

 

13 

 

-143.20 

 

0.0 

 

0.94 

Global – PA 

 

17 -142.40 8.8 0.01 

Global – TRI 

 

17 -142.43 8.8 0.01 

Global – human footprint 

 

17 -142.45 8.9 0.01 

Global – precipitation 

 

17 -142.54 9.1 0.01 

Global – continental indicator 

 

17 -142.77 9.5 0.01 

Global 

 

18 -142.39 11.5 0.00 

Global – temperature and precipitation 

 

15 -147.14 13.0 0.00 

Global – temperature 

 

16 -146.35 14.0 0.00 

Human 

 

11 -152.74 14.1 0.00 

Global – GPP 

 

16 -146.75 14.8 0.00 

Global – quadratic temperature 

 

17 -145.50 15.0 0.00 

Global – quadratic GPP 

 

17 -146.12 16.2 0.00 

Global – quadratic terms 

 

16 -147.90 17.1 0.00 

Global – NDWI 

 

17 -146.99 18.0 0.00 

Environmental 

 

16 -149.62 20.4 0.00 

Global – human density 

 

17 -149.43 22.7 0.00 
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Global – land cover 

 

16 -154.82 31.0 0.00 

Null 5 -171.68 38.1 0.00 
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Table 2.2. Final model predicting log(density) for leopard range-wide. Shown is the estimated 

coefficient value (β; for centered and standardized variables), standard error (SE), and upper 

(UPR) and lower (LWR) 95% confidence interval bounds. Variables organized between 

environmental effects affecting density and design effects (aspects of study design for each 

density estimate in the data sample) that may explain sampling variance. A bolded coefficient 

indicates confidence intervals excluding zero. 

 

        Scale 

Variable (buffer radius) β SE UPR LWR 

 

Environmental effects: 

Temperature 20 km ̶ 0.0025  ̶ 0.1235 ̶ 0.25   0.24 

Temperature2 20 km ̶ 0.2285   0.0884 ̶ 0.40  ̶ 0.05 

GPP   1 km  0.0012   0.0757        ̶ 0.15   0.15 

GPP2    1 km ̶ 0.1544   0.0641 ̶ 0.28  ̶ 0.03 

Human density   1 km ̶ 0.2500   0.1029 ̶ 0.45  ̶ 0.05 

NDWI   5 km  0.3735   0.0993  0.18   0.57 

Land cover:*  

    Dense forest/cropland 20 km                 ̶ 0.4562   0.1491 ̶ 0.75  ̶ 0.16 

    Shrub/urban 20 km                 ̶ 1.4290   0.3239 ̶ 2.07  ̶ 0.79 

 

Design effects: 

Area sampled                            ̶ 0.0002 <0.0001 ̶ 0.0002 ̶ 0.0001 

Camera sites                            ̶ 0.0001   0.0016 ̶ 0.0033  0.0030 

Study days                            ̶ 0.0008   0.0008 ̶ 0.0024  0.0009 

Trap nights                           <0.0001 <0.0001     < ̶ 0.0001      <0.0001 

 
*Reference category was open forest/herbaceous (20 km) 
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Table 2.3. Predicted population size for leopard by country. 

 

Country Predicted N (95% CI) Country Predicted N (95% CI) 

    

India 34,962 (24,845 – 50,119) Somalia 789 (571 – 1,096) 

Angola 30,395 (24,092 – 38,417) Indonesia 734 (450 – 1,218) 

Tanzania 28,576 (22,291 – 36,461) Turkey 664 (431 – 1,033) 

Democratic 

Republic of the 

Congo 

22,244 (15,902 – 31,291) Equatorial 

Guinea 

656 (448 - 964) 

Mozambique 19,898 (15,694 – 25,266) Burkina Faso 608 (403 - 920) 

Central African 

Republic 

18,107 (13,831 – 23,726) Eritrea 601 (432 - 838) 

South Africa 16,197 (12,091 – 21,934) Thailand 585 (401 - 860) 

Ethiopia 15,573 (11,464 – 21,191) Nigeria 544 (402 - 735) 

Iran 15,113 (10,079 – 22,783) Ghana 509 (362 - 717) 

Congo 12,921 (9,313 – 18,001) Benin 465 (316 - 687) 

Gabon 12,127 (8,706 – 16,935) Swaziland 454 (343 - 609) 

South Sudan 11,975 (9,010 – 15,938) Malaysia 441 (297 - 659) 

Namibia 11,675 (8,315 – 16,629) Malawi 401 (307 - 523) 

Kenya 11,004 (8,156 – 15,010) Bangladesh 336 (240 - 472) 

Botswana 10,630 (7,883 – 14,462) Russian 

Federation 

323 (158 - 678) 

Zambia 9,909 (7,910 – 12,408) Guinea-Bissau 312 (233 - 418) 

Zimbabwe 6,575 (5,237 – 8,285) Azerbaijan 272 (178 - 421) 

Nepal 6,477 (4,653 – 9,221) Cambodia 252 (194 - 330) 

Cameroon 5,652 (4,228 – 7,573) Mali 195 (134 - 286) 

Uganda 3,087 (2,377 – 4,027) Saudi Arabia 178 (124 - 257) 

Chad 2,396 (1,640 – 3,490) Armenia 138 (85 - 225) 

China 2,280 (1,242 – 4,503) Yemen 120 (78 - 186) 

Myanmar 1,831 (1,352 – 2,492) Oman 101 (72 - 142) 

Côte d'Ivoire 1,487 (1,095 – 2,020) Rwanda 97 (76 - 125) 

Guinea 1,311 (1,000 – 1,721) Afghanistan 61 (21 - 179) 

Pakistan 1,231 (796 – 1,980) Georgia 48 (24 - 102) 

Iraq 1,228 (838 – 1,805) Djibouti 47 (31 - 70) 

Bhutan 1,168 (753 – 1,861) Lesotho 15 (11 - 22) 

Senegal 1,034 (698 – 1,532) Sierra Leone 14 (11 - 19) 

Sri Lanka 1,008 (651 – 1,588) Niger 11 (7 - 18) 

Liberia 991 (746 – 1,316) Togo 5 (3 - 7) 

Sudan 931 (691 – 1,260) Burundi 5 (4 - 6) 

Turkmenistan 799 (548 – 1,170)   
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FIGURES: CHAPTER 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1. Published leopard density estimates obtained using non-spatial capture-mark-recapture with a buffer 

of half the mean maximum (HMMDM) distance moved (x-axis) versus spatial capture-mark-recapture (y-axis; 

N=17, R2 = 0.69). 
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Figure 2.2. Predicted relationship from my top model between log(leopard density) (individuals/100 km2) 

and temperature (A) and GPP (B). 

A 

B 
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Figure 2.3. Within extant leopard range as defined by Jacobson et al. (2016), shown is the predicted 

leopard density (individuals/100 km2) from my top model (A) as well as uncertainty expressed as the 

standard error in predicted leopard density (B). The data used to fit the model also shown (B).   

A 

B 
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CONCLUSIONS 

Despite growing recognition of the importance of observation scale on study outcomes (Wiens 

1989; Levin 1992), my work shows that many studies of human-carnivore conflict, specifically 

carnivore depredation studies, still fail to report either standard conflict metrics or effective 

estimates of spatial and temporal scale. Both these deficiencies interfere with gaining useful 

inference from cross-study comparisons. For those studies that did report sufficient information 

for comparison, human-carnivore conflict metrics exhibited a generally linear relationship with 

observation scale. The total number of animals killed and attack incidents increased with 

spatiotemporal extent, whereas percent annual loss of stock decreased across both broader spatial 

extents and temporal durations. There was also evidence of nonlinearity in the spatial scaling of 

the number of attack incidents. Understanding such scaling relationships will inform more robust 

aggregation of data from diverse socioecological contexts, enabling clearer inference when 

seeking effective conservation actions. Moreover, scale has an effect not only on observations of 

human-carnivore interactions, but also on the association between such observations and other 

variables. Using leopards as an example, estimated densities of this species varied with spatial 

scale of the study (a design effect), which I controlled for to elucidate the effects of 

environmental (temperature, productivity, land cover, water) and anthropogenic (human density) 

drivers. Spatial drivers were most predictive of leopard density over relative fine (1 or 5 km) to 

broad (20 km) scales, and several relationships were non-linear. Overall, the scale-dependent 

nature of ecological processes has been well documented, although until now this knowledge has 

only been scantily applied to global consideration of large carnivores. Further, where scale is 

considered, extent is far more commonly reported than resolution despite evidence that the 

spatial and temporal grain of observation influences prediction uncertainty and relationships 
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between variables. There are still many fertile areas for research moving forward, including 

elucidating which spatiotemporal drivers are contributing to high uncertainty in human-carnivore 

conflict observations across both extent and resolution, and understanding how socioecological 

processes interact across scales to produce observed patterns. And for future cross-study 

comparisons, I’ve made several recommendations for how local studies can contribute more 

reliable information to enable corrections for scaling effects and, by extension, contribute more 

directly to effective conservation actions for large carnivores.    
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APPENDICES 

Appendix 1.1a. Components of spatial and temporal extent models 

Model name in subsequent Appendices* Components 

null NA 

spatial Spatial Extent 

spatial_quadratic Spatial Extent2 + Human Density2 

only_spatial_quadratic Spatial Extent2 

temporal Temporal Extent 

temporal_quadratic Temporal Extent2 + Human Density2 

only_temporal_quadratic Temporal Extent2 

full Spatial Extent + Temporal Extent + Spatial 

Extent*Temporal Extent + Spatial Extent*Human Density 

+ Spatial Extent*Carnivore Mass 

full_quadratic Spatial Extent2 + Temporal Extent2 + Human Density2 + 

Spatial Extent*Temporal Extent + Spatial Extent*Human 

Density + Spatial Extent*Carnivore Mass 

interactions_spatial_temporal Spatial Extent*Temporal Extent 

interactions_spatial_mass Spatial Extent*Carnivore Mass 

interactions_spatial_density Spatial Extent*Human Density 

interactions_temporal_mass Temporal Extent*Carnivore Mass 

interactions_temporal_density Temporal Extent*Human Density 

*Human density and carnivore body mass are included in each model, including the null, not 

explicitly listed here. 
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Appendix 1.1b. Components of spatial and temporal resolution models 

Model name in subsequent Appendices* Components 

null NA 

full Temporal Extent + Temporal Extent*Temporal 

Resolution 

spatial Spatial Extent 

temporal Temporal Extent 

only_human_quadratic Human Density2 

full_quadratic Human Density2 + Temporal Extent + Temporal 

Extent*Temporal Resolution 

interactions_temporal Temporal Extent*Temporal Resolution 

“sres” or “tres” Only spatial or temporal resolution 

*Apart from the null model, each model also contains either spatial or temporal resolution. 

Human density and carnivore body mass are included in each model, including the null, not 

explicitly listed here. 
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Appendix 1.2a. AICc model selection results for %loss (total, n = 76). See Appendix 1.1a for 

model components 

Modnames K AICc Delta_AICc ModelLik AICcWt LL Cum.Wt 

interactions_spatial_temporal 8 358 0.0 1.0e+00 6.0e-01 -168 0.60 

full 11 359 1.5 4.8e-01 2.9e-01 -165 0.89 

spatial 6 363 5.7 5.8e-02 3.5e-02 -174 0.93 

interactions_spatial_density 7 363 5.8 5.6e-02 3.4e-02 -173 0.96 

only_spatial_quadratic 7 365 7.1 2.8e-02 1.7e-02 -173 0.98 

full_quadratic 14 365 7.8 2.0e-02 1.2e-02 -164 0.99 

interactions_spatial_mass 8 367 8.9 1.1e-02 6.9e-03 -173 1.00 

spatial_quadratic 8 367 9.6 8.2e-03 4.9e-03 -173 1.00 

temporal 6 455 97.0 8.5e-22 5.1e-22 -220 1.00 

only_temporal_quadratic 7 456 98.0 5.3e-22 3.2e-22 -219 1.00 

interactions_temporal_mass 8 457 99.0 3.2e-22 1.9e-22 -218 1.00 

interactions_temporal_density 7 457 99.0 3.1e-22 1.9e-22 -220 1.00 

temporal_quadratic 8 458 100.4 1.6e-22 9.5e-23 -219 1.00 

null 5 460 102.0 7.0e-23 4.2e-23 -223 1.00 
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Appendix 1.2b. AICc model selection results for log(#kills) (total, n = 111). See Appendix 1.1a 

for model components 

Modnames K AICc Delta_AICc ModelLik AICcWt LL Cum.Wt 

interactions_temporal_mass 8 427 0.0 1.00000 0.88496 -204 0.88 

only_temporal_quadratic 7 433 5.9 0.05144 0.04552 -208 0.93 

temporal_quadratic 8 433 6.4 0.04112 0.03639 -207 0.97 

temporal 6 435 8.4 0.01518 0.01343 -210 0.98 

interactions_temporal_density 7 436 9.2 0.01005 0.00890 -209 0.99 

interactions_spatial_temporal 8 438 10.8 0.00454 0.00402 -209 0.99 

full 11 440 12.7 0.00174 0.00154 -206 0.99 

null 5 440 13.3 0.00132 0.00117 -214 1.00 

only_spatial_quadratic 7 441 13.9 0.00097 0.00086 -212 1.00 

full_quadratic 14 441 14.0 0.00093 0.00083 -203 1.00 

spatial_quadratic 8 441 14.2 0.00085 0.00075 -211 1.00 

spatial 6 441 14.2 0.00083 0.00073 -213 1.00 

interactions_spatial_mass 8 441 14.5 0.00072 0.00064 -211 1.00 

interactions_spatial_density 7 443 16.2 0.00031 0.00028 -213 1.00 
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Appendix 1.2c. AICc model selection results for log(#attacks) (total, n = 62). See Appendix 1.1a 

for model components 

Modnames K AICc Delta_AICc ModelLik AICcWt LL Cum.Wt 

interactions_temporal_density 7 242 0.00 1.0000 0.2517 -111 0.25 

spatial_quadratic 8 242 0.11 0.9457 0.2381 -110 0.49 

temporal_quadratic 8 242 0.38 0.8263 0.2080 -110 0.70 

interactions_spatial_temporal 8 243 1.77 0.4127 0.1039 -111 0.80 

only_temporal_quadratic 7 244 2.39 0.3026 0.0762 -113 0.88 

temporal 6 245 3.03 0.2203 0.0555 -114 0.93 

only_spatial_quadratic 7 246 4.15 0.1256 0.0316 -114 0.96 

null 5 247 5.18 0.0750 0.0189 -117 0.98 

spatial 6 249 7.10 0.0288 0.0072 -116 0.99 

interactions_temporal_mass 8 250 8.08 0.0176 0.0044 -114 1.00 

interactions_spatial_mass 8 251 9.38 0.0092 0.0023 -115 1.00 

interactions_spatial_density 7 251 9.45 0.0089 0.0022 -116 1.00 
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Appendix 1.3a. AICc model selection results for %loss (temporal resolution). See Appendix 1.1b 

for model components 

Modnames K AICc Delta_AICc ModelLik AICcWt LL Cum.Wt 

spatial 9 338  0 1.0e+00 1.0e+00 -157 1 

temporal 9 395 57 4.8e-13 4.8e-13 -185 1 

tres 8 398 60 9.8e-14 9.8e-14 -188 1 

only_human_quadratic 9 400 63 2.5e-14 2.5e-14 -188 1 

full 12 401 63 1.8e-14 1.8e-14 -184 1 

full_quadratic 13 404 66 4.0e-15 4.0e-15 -184 1 

null 5 554 216 1.3e-47 1.3e-47 -270 1 
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Appendix 1.3b. AICc model selection results for log(#kills) (temporal resolution). See Appendix 

1.1b for model components 

Modnames K AICc Delta_AICc ModelLik AICcWt LL Cum.Wt 

temporal 9 321  0.00 1.0e+00 2.1e-01 -149 0.21 

tres 8 321  0.15 9.3e-01 2.0e-01 -150 0.41 

only_human_quadratic 9 321  0.38 8.2e-01 1.8e-01 -149 0.59 

spatial 9 321  0.54 7.6e-01 1.6e-01 -149 0.75 

full 12 322  0.94 6.2e-01 1.3e-01 -145 0.89 

full_quadratic 13 322  1.28 5.3e-01 1.1e-01 -144 1.00 

null 5 440 119.43 1.2e-26 2.5e-27 -214 1.00 
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Appendix 1.3c. AICc model selection results for log(#attacks) (temporal resolution). See 

Appendix 1.1b for model components 

Modnames K AICc Delta_AICc ModelLik AICcWt LL Cum.Wt 

temporal 9 154 0.0 1.0e+00 6.7e-01 -63 0.67 

tres 8 156 2.2 3.4e-01 2.2e-01 -66 0.89 

interactions_temporal 12 159 4.5 1.1e-01 7.2e-02 -58 0.96 

spatial 9 160 5.8 5.4e-02 3.6e-02 -66 1.00 

null 5 247 92.6 7.7e-21 5.1e-21 -117 1.00 
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Appendix 1.4. Residual plots of single top models fit to the three metrics of conflict 
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Appendix 1.5a. Studies plotted according to their latitude and longitude values, and symbolized 

by spatial extent (km2) 
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Appendix 1.5b. Studies plotted according to their latitude and longitude values, and symbolized 

by temporal extent (years) 
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Appendix 2.1. Description of land cover classes as derived from MODIS MCD12Q1 and 

collapsed classes used for predicting leopard density.  

Initial class Description Collapsed class 

 

Barren 

 

≥60% non-vegetated/barren (sand, 

rock, soil) or permanent snow/ice, 

<10% vegetation 

 

 

Not encountered (ultimately 

masked from predictions) 

Permanent Snow & 

Ice 

≥60% covered by snow and ice for at 

least 10 months of the year 

 

Not encountered (ultimately 

masked from predictions) 

Water Bodies ≥60% covered by permanent water 

bodies 

 

Not encountered (ultimately 

masked from predictions) 

Urban & Built-Up 

Lands 

≥30% made up of impervious surfaces 

including building materials, asphalt, 

and vehicles 

 

Shrub / urban 

Dense Forests Tree cover >60% (canopy >2m 

height) 

 

Dense forest / cropland 

Open Forests Tree cover 10-60% (canopy >2m 

height) 

 

Reference 

Forest/Cropland 

Mosaics 

Mosaics of small-scale cultivation 

(40-60%) with >10% natural tree 

cover 

 

Dense forest / cropland 

Natural Herbaceous Dominated by herbaceous annuals 

(<2m), ≥10% cover 

 

Reference 

Natural 

Herbaceous/Croplands 

Mosaics  

Mosaics of small-scale cultivation 

(40-60%) with natural shrub or 

herbaceous vegetation 

 

Dense forest / cropland 

Herbaceous Croplands Dominated by herbaceous annuals 

(<2m), ≥60% cover, >60% cultivated 

 

Dense forest / cropland 

Shrublands >60% shrub cover (1-2m height) Shrub / urban 
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Appendix 2.2. Spatial data sources used to derive environmental variables for the leopard density 

models. 

Data name Resolution Source 
 

Human population density 

(2010) 

 

1 km 
 

https://sedac.ciesin.columbia.edu/data/set/g

pw-v4-population-density-adjusted-to-2015-

unwpp-country-totals-rev11  

 

Human footprint index (2009) 1 km https://sedac.ciesin.columbia.edu/data/set/w

ildareas-v3-2009-human-footprint  

 

Terrain ruggedness (2010) 1 km https://www.usgs.gov/coastal-changes-and-

impacts/gmted2010  

 

Categorical land cover type 

(band used is LC_Prop2, 

average from 2001 to 2022) 

 

500 m https://lpdaac.usgs.gov/products/mcd12c1v0

61/  

Enhanced vegetation index 

(average from 2000 to 2017) 

 

500 m https://developers.google.com/earth-

engine/datasets/catalog/MODIS_MCD43A4

_006_EVI  

 
Normalized difference 

vegetation index (average 

from 2000 to 2017) 

 

500 m https://developers.google.com/earth-

engine/datasets/catalog/MODIS_MCD43A4

_006_NDVI  

 
Normalized difference water 

index (average from 2000 to 

2017) 

500 m https://developers.google.com/earth-

engine/datasets/catalog/MODIS_MCD43A4

_006_NDWI  

 
Mean annual temperature 

(bioclimatic variables, 

average from 1970 to 2000) 

 

1 km https://www.worldclim.org/data/worldclim2

1.html  

Mean annual precipitation 

(bioclimatic variables, 

average from 1970 to 2000) 

 

1 km https://www.worldclim.org/data/worldclim2

1.html  

Mean forest canopy cover 

(average from 2000 to 2020) 

250 m https://lpdaac.usgs.gov/products/mod44bv0

06/  

 
Gross primary productivity 

(average from 2000 to 2022) 

500 m https://lpdaac.usgs.gov/products/mod17a2h

v006/  

 

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11
https://sedac.ciesin.columbia.edu/data/set/wildareas-v3-2009-human-footprint
https://sedac.ciesin.columbia.edu/data/set/wildareas-v3-2009-human-footprint
https://www.usgs.gov/coastal-changes-and-impacts/gmted2010
https://www.usgs.gov/coastal-changes-and-impacts/gmted2010
https://lpdaac.usgs.gov/products/mcd12c1v061/
https://lpdaac.usgs.gov/products/mcd12c1v061/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_EVI
https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_EVI
https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_EVI
https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_NDVI
https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_NDVI
https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_NDVI
https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_NDWI
https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_NDWI
https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_NDWI
https://www.worldclim.org/data/worldclim21.html
https://www.worldclim.org/data/worldclim21.html
https://www.worldclim.org/data/worldclim21.html
https://www.worldclim.org/data/worldclim21.html
https://lpdaac.usgs.gov/products/mod44bv006/
https://lpdaac.usgs.gov/products/mod44bv006/
https://lpdaac.usgs.gov/products/mod17a2hv006/
https://lpdaac.usgs.gov/products/mod17a2hv006/
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Net primary productivity 

(average from 2000 to 2022) 

500 m https://lpdaac.usgs.gov/products/mod17a3h

gfv006/  
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Appendix 2.3. Plausible candidate models for predicting log(density) of leopard (Panthera 

pardus). An “x” in a shaded cell indicates the model included that variable. All models 

(including the null) also included 4 design-based covariates not shown here (i.e., area sampled, 

number of study days, number of camera sites, and number of trap nights). 
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Null              
Global (Full) x x x x x x x x x x x x x 
Human impact    x x      x x x 
Environmental x x x   x x x x x x x x 
Global – indicator 

variable 
x x x x x x x x x x x   

Global – protected area x x x x x x x x x x x x  
Global – NDWI x x x x x x  x x x x x x 
Global – EVI x x x x x x x  x x x x x 
Global – GPP x x x x x x x x   x x x 
Global – temperature   x x x x x x x x x x x 
Global – precipitation x x  x x x x x x x x x x 
Global – human density x x x  x x x x x x x x x 
Global – human footprint x x x x  x x x x x x x x 
Global – TRI x x x x x  x x x x x x x 
Global – land cover x x x x x x x x x x  x x 
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Global – temperature and 

precipitation 
   x x x x x x x x x x 

Global – quadratic terms x  x x x x x x x  x x x 
Global – quadratic 

temperature 
x  x x x x x x x x x x x 

Global – quadratic GPP x x x x x x x x x  x x x 
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