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Abstract 
 
S. J. K. Hansen.  Estimating density of coyotes from call-response surveys using distance 
sampling and soundshed models, 80 pages, 2 tables, 8 figures, 1 appendix, 2013. 
 
 
 
 
Density estimates that account for differential animal detectability are difficult to acquire for 
elusive species such as mammalian carnivores.  I evaluated two novel designs to account for 
detectability of coyotes (Canis latrans) using vocalization surveys:  distance sampling and 
soundshed modeling.  This large-scale study involved 524 call-response surveys across New 
York State, using triangulation to estimate distance to calling animals and estimate the 
probability of call detection.  As an alternative, I propagated sound across the landscape in a 
GIS to produce a standalone detectability function.  Compared to distance sampling, soundshed 
modeling provided a finer-resolution, spatially-explicit estimate of detection, yielded a slightly 
lower and more precise estimate of coyote density in the state, and provided a more efficient 
means of monitoring changes in coyote populations using vocalization surveys.  Both 
approaches are applicable to other vocal species from songbirds to marine mammals, and 
soundshed modeling in particular may greatly improve the utility of vocalization surveys for 
population monitoring.   
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Introduction 

Coyotes Canis latrans occupy a broad geographic range, having colonized much of North 

America following the extirpation of wolves Canis lupus lycaon from large portions of their 

former distribution (Parker 1995).  However, coyotes have become common in many regions 

only within the past several decades, especially the eastern United States.  Throughout much of 

the Northeast today coyotes are considered to be the most abundant and widespread mid-

sized carnivore, indicating the capacity for a large and potentially profound impact on the 

ecosystems they have colonized.  Moreover, coyote colonization of the eastern U.S. has 

generated tremendous public interest, with “how many are there?” being the number one 

question the public asks the New York State Department of Environmental Conservation.  State 

agencies desire a defensible answer to that question to satisfy the public.  Managers also desire 

an efficient means of quantifying coyote abundance to gauge their potential ecological impacts, 

direct management action, and evaluate coyote population responses to management action. 

The abundance (or density) of a species is a key parameter determining its status and 

ecological impact (IUCN 2012), but for wide-ranging and elusive animals like the coyote, 

abundance is also one of the most difficult population parameters to estimate.  Increasing the 

spatial extent of population surveys to provide statewide inferences usually requires a decrease 

in the local field effort (assuming money and time are an issue); thus, indices of abundance 

rather than true abundance estimates are typically employed for large-scale monitoring 

programs.  For wild carnivores, especially cryptic animals like the coyote, the number of 

vocalizations, tracks, or scats encountered per unit effort are commonly used indices of 

abundance (Henke & Knowlton 1995).  For coyotes and wolves, call-response surveys in 
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particular have been widely employed because these species  reliably respond vocally when 

within hearing distance of a broadcast call (siren or recorded series of howls; Wolfe 1974; 

Wenger & Cringan 1978; Goff 1979; Sharp 1981; Harrington & Mech 1982; Pyrah 1984; 

Crawford, Pelton & Johnson 1993; Gaines, Neale & Naney 1995) and these surveys are easily 

conducted from roads, eliminating reliance on private land access to collect data.  Such indices 

of abundance are useful for monitoring trends in populations when the relationship between 

true abundance and the index is known, but without establishing and periodically validating 

that relationship, a change in the index may indicate either a change in the population or a 

change in the relationship between the index and true abundance.  Developing useful indices of 

abundance therefore must begin with a baseline estimate of true abundance, and more 

desirable would be an efficient way to turn easy to collect data like call-response rates into a 

means of estimating population density (and therefore abundance) with precision (Marques et 

al. 2012).     

An ideal population estimator for a species like the coyote would be inexpensive, 

efficient in terms of field logistics, and noninvasive.  Furthermore, the estimator would produce 

confidence intervals with a meaningful degree of precision (20% coefficient of variation being 

the most common standard; Patel, Patel & Shiyani 2001) and it would be scalable, meaning it 

would provide reliable estimates within a wildlife management unit, ecoregion, or larger spatial 

scale. Herein, I provide two novel approaches for estimating coyote density in New York State 

that meet these conditions.  Chapter 1 explores the use of road-based call-response surveys 

within a distance sampling framework that uses established analytical techniques to estimate 

both probability of detection and density for a single population.  The novelty here lies in using 
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a triangulation approach to quantify distance to sound rather than to a visually-detected 

animal.  Chapter 2 embarks upon more novel ground by estimating a GIS-based, spatially-

explicit standalone model for the probability of detecting coyote calls.  This standalone model 

was used to correct call-response survey counts of coyotes using the same data from the 

distance sampling effort, but without requiring that distance be estimated.   

The chapters in this thesis have been prepared for publication as contributed research papers in 

the Journal of Applied Ecology. 
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Chapter 1 

Pairing call-response surveys and distance sampling for a mammalian carnivore 

 

Summary 

1.  Precise density estimates that account for differential animal detectability are difficult and 

costly to acquire for elusive species such as mammalian carnivores.  Less expensive indices, e.g. 

call-response rates may thus be favored for monitoring despite potential unreliability over 

space and time due to differences in animal detectability.  Seeking an efficient and robust 

means of monitoring an elusive but vocal carnivore, coyote Canis latrans, I paired distance 

sampling with call-response surveys.  

2.  My approach addressed both non-response bias and call detectability, and I used 

triangulation (with three simultaneous observers) to determine distance to a calling animal.  

The approach was field-tested under controlled conditions using staged calls and blind 

observers as well as GPS-collared animals, and then applied in a broad-scale survey of coyote 

populations across New York State from June–August 2010.  

3.  Surveys at 541 points (≥ 6 km apart) yielded 66 responses triangulated to ±119 m precision.  

The estimated probability of detection for calling animals was 0·19 ± 0·03 SE.  Correcting for a 

48% non-response rate (probability of availability) in addition to the probability of detecting a 

calling coyote, I estimated 1·3 coyote pairs 10 km-2 (95% CI: 0·8–2·1), reflecting the territory-

holding population component based on known patterns of coyote calling behavior. 

4. Synthesis and applications.  Pairing distance sampling with call-response surveys provided an 

efficient means of monitoring coyotes that is readily extendable to other elusive but reliably 



5 

vocal mammals such as wolves Canis lupus, golden jackals Canis aureus, and some primates.  

The approach is sufficiently flexible for use at multiple scales and for other species provided the 

key assumptions of distance sampling are met. 

 

Introduction 

Estimating animal density with precision is needed to monitor changes in small or at-risk 

populations (Joseph et al. 2006; Kindberg, Ericsson & Swenson 2009; Antao, Pérez-Figueroa & 

Luikart 2011), evaluate the ecological impacts of invasive, common or strongly-interactive 

species (Berger & Gese 2007; Letnic et al. 2011), quantify population responses to management 

actions (Wittmer et al. 2005; Mangas & Rodríguez-Estival 2010; Kinnaird & O'Brien 2012), and 

ultimately facilitate defensible management decisions.  With wild species, robust estimates of 

density are commonly obtained using one of two methods: capture-mark-recapture (CMR; Otis 

et al. 1978) or distance sampling (Buckland et al. 2001), both of which estimate and correct for 

the probability of animal detection during surveys.  CMR approaches fundamentally require 

capturing and marking individuals and resighting marked individuals over time.  Camera traps 

and non-invasive genetic sampling avoid the physical capture requirement, greatly increasing 

the utility of CMR approaches for highly vagile and hard or risky to capture species like large-

bodied mammals.  However, camera-based CMR remains available only for species with unique 

natural markings (Karanth 1995; Trolle & Kéry 2003; Negroes et al. 2010), costs for non-invasive 

genetic CMR remain high due to the large number of samples required, and both camera and 

genetic methods require a high sampling intensity which renders geographically restricted 

inferences.  In contrast to CMR, distance sampling requires sighting a given animal during point- 
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or transect-based surveys, and accurately measuring the distance between the animal and the 

observer.  With this approach, the frequency of animal sightings with respect to distance from 

the observer provides the information needed to estimate the probability of detection and 

correct animal counts.  Distance sampling yields robust population estimates for rare species 

(Focardi, Isotti & Tinelli 2002; Ellis & Bernard 2005; Zylstra, Steidl & Swann 2010), efficient 

surveys given both small and large sampling regions (e.g. Andriolo et al. 2005; Durant et al. 

2011), and population estimates from a single sampling event (provided sufficient detections 

are recorded) making the approach more broadly applicable than CMR for monitoring large 

animal populations (Samuel et al. 1987; Jathanna, Karanth & Johnsingh 2003; Liu et al. 2008; 

Schmidt et al. 2012). 

Aural detection of animals has extended the utility of distance sampling to hard-to-sight 

but reliably vocal species like songbirds (Somershoe, Twedt & Reid 2006), cetaceans (Marques 

et al. 2009; Kusel et al. 2011), and some primates (Dacier et al. 2011).  Broadcasting calls to 

elicit vocal responses can increase detection rates for species that vocalize too infrequently for 

passive surveys such as marsh birds (Conway, Gibbs & Haukos 2005) and burrowing owls 

Athene cunicularia (Haug & Didiuk 1993).  Although several mammalian carnivore species 

reliably vocalize, e.g. gray wolves Canis lupus, golden jackals Canis aureus, and coyotes Canis 

latrans, call-response surveys for these species are typically used only to provide an index of 

animal abundance (e.g. responses per unit effort) rather than a detectability-corrected 

population estimate (Wenger & Cringan 1978; Goff 1979; Sharp 1981; Harrington & Mech 1982; 

Okoniewski & Chambers 1984; Blanton 1988; Giannatos et al. 2005).  Linking the power of 
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distance sampling to call-response surveys could provide a novel and efficient survey method 

for monitoring these otherwise elusive carnivore species.     

Several assumptions underlie valid inference from distance sampling, reflecting both 

design and behavioral issues that pose specific challenges to call-response surveys for 

carnivores.  In terms of design, foremost, survey locations must be random with respect to the 

distribution of the target species (Buckland et al. 2001).  Large-scale studies of carnivores are 

typically road-based (Wolfe 1974; Sharp 1981; Fuller & Sampson 1988; Crawford, Pelton & 

Johnson 1993), and roads may either fail to provide adequate coverage of the ecological 

conditions pertinent to wide-ranging species (a design issue) or may be avoided by the target 

species (e.g. Wittmer et al. 2005).  The process of binning observations into categories of 

distances to estimate the probability of detection may be sufficiently flexible to accommodate 

road responses, but some idea of the magnitude and direction of animal responses with respect 

to roads is necessary.  Second, the distance between the observer and the animal must be 

measured precisely or at least with sufficient precision relative to the width of distance bins 

required for a precise estimate of the probability of detection (Buckland et al. 2001).  With 

long-range vocalizations, estimating distance to the call based solely on call volume is 

discouraged (Alldredge, Simons & Pollock 2007b) because variation in the volume and direction 

of the source call (Alldredge, Simons & Pollock 2007a), characteristics of the surrounding 

landscape (Fricke 1984; Simons et al. 2007), and meteorological conditions at the time of survey 

(Wiley & Richards 1982) will each act to attenuate sound.  Thus, some alternative to estimating 

distance to vocalizing carnivores, like triangulation or passive acoustic arrays, should be 

considered and their estimation errors quantified.  Third, for each detection, the number of 
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animals present must be counted with certainty.  Hallberg (2007) demonstrated that un-aided 

aural estimation of group size is possible; however, harmonic obfuscation of individual signals 

within the group combined with sound attenuation processes affect certainty of the count 

(Lehner 1978; Harrington & Mech 1982).  This problem may be overcome by recording animal 

responses and performing a spectral analysis to identify individual signals (Dawson & Efford 

2009; Blumstein et al. 2011) or, perhaps more efficiently, using a cue counting approach where 

each detected response counts as one group and estimates of group size are incorporated into 

the density estimate as a multiplier.     

In terms of behavioral responses, the assumption that all animals directly on the survey 

line (or point, in this case) must be detected (Buckland et al. 2001) may be an issue with 

territorial carnivores that might not respond vocally to a loud and close call (resulting in non-

detection of animals at the survey point).  This problem may be alleviated to some degree by 

starting broadcasts at say half volume and increasing volume over successive broadcasts 

(Harrington & Mech 1982).  Animals also must be detected (and distances to those animals 

measured) at their initial location.  That animals do not move prior to responding vocally in call-

response surveys has been rarely tested, and could bias density estimates depending on the 

direction and magnitude of movement (Fuller et al. 2012).  Movement could be especially 

problematic with territorial animals that may investigate the area from which a call originated 

prior to or perhaps instead of producing a vocalization in response to it (Mills, Juritz & Zucchini 

2001; Robbins & McCreery 2003; Fuller et al. 2012).  Radio-collared or highly visible animals in 

controlled call-response trials may be required to understand the magnitude of this issue for a 

given study species.  Finally, that not all animals may respond to a broadcast call (Buckland et 
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al. 2004; Bächler & Liechti 2007) creates differences in availability among individuals that might 

correlate to gender, social status, or proximity to the calling device, any of which could 

introduce biases that underestimate population size by underestimating the encounter rate 

(Fulmer 1990; Mitchell 2004).  For these reasons, any initial effort to pair distance sampling 

with a vocalizing carnivore should focus on a species whose responses to call-elicitations have 

been fairly well studied, and for which ancillary data (e.g. radio-telemetry data) is available to 

test critical assumptions. 

Coyotes  provided an ideal study animal for this research because their behavior with 

respect to call-elicitations has been well studied (Alcorn 1946; McCarley 1975; Goff 1979; Sharp 

1981; Lehner 1982; Pyrah 1984; Blanton 1988; Walsh & Inglis 1989; Coolahan 1990; Fulmer 

1990; Crawford, Pelton & Johnson 1993; Gaines, Neale & Naney 1995; Gese & Ruff 1998; 

Dunbar & Giordano 2002; Mitchell 2004; Hallberg 2007), they are generally widespread and 

abundant throughout the eastern United States (Fener et al. 2010), and a companion study in 

New York State provided access to GPS-collared coyotes to evaluate critical assumptions about 

their behavior with respect to roads.  Herein, I evaluated a novel distance sampling approach 

using call-response surveys to provide the first comprehensive assessment of coyote population 

status in New York State.  I first evaluated whether roads provided sufficient coverage of 

ecological variation pertinent to coyotes, and, using the data from GPS-collared animals, 

evaluated whether coyotes avoided areas adjacent to road-based observation points.  I then 

tested a unique triangulation-based approach to estimating distance to calling coyotes using 

three simultaneous observers under controlled conditions.  Finally, I designed and conducted a 

statewide population survey for coyotes, using the published literature to account for the 
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<100% availability of coyotes during surveys, and ultimately estimated the probability of 

detecting a calling coyote and the size of the statewide coyote population.  Ultimately, I 

demonstrate the utility of distance sampling as a novel means to monitor elusive but vocal 

carnivores like coyotes over broad geographic scales, and discuss considerations for extension 

to other species, landscapes, and scales.   

 

Materials and methods 

Study area 

My study area encompassed ~122,000 km2 of New York State (excluding Long Island), a 

landscape dominated by private land (~ 85%) except for within the Adirondack Mountains (Fig. 

1.1).  The region was ecologically diverse with agriculture-dominated and topographically flat 

plains along the Great Lakes, the  mixed agriculture and forest-dominated and topographically 

rolling Allegany Plateau in the southern tier, the hardwood-forest dominated and 

topographically rich Adirondack and Catskill Mountain ranges in the east, and marshy river 

valleys surrounding the mountain ranges (Bailey 1980).  Two focal areas that contained GPS-

collared coyotes were located in the western (Steuben County) and eastern (Otsego County) 

Allegheny Plateau region (Fig. 1.1).  Elevation across the state ranged from sea level to 1629 m 

and temperatures average 20·4 °C in July and -6·3 °C in January (Gesch 2007). 

 

Efficacy of road-based design 

I first evaluated whether road-based samples captured the same proportional coverage 

of land cover classes as the overall landscape.  To do so, I reclassified the 2006 National Land 
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Cover Data (NLCD; Fry et al. 2011) into six major types:  Forest (Deciduous, Coniferous and 

Mixed), Pasture, Row Crop, Wetland (Forested and Open canopy), Shrub, and Other (Water, 

Urban, Suburban, and Barren land) using ArcGIS 10 (Esri, Redlands, California).  I then calculated 

the percentage of each cover type occurring within road-based sample points buffered to 1,800 

m (n = 541, see Statewide survey design) and a comparable set of 541 random points.  I 

separately tested differences between road and random points within the Adirondack 

Mountains given the much lower road density in that region compared to the rest of New York 

State.  Overall, I observed <3% difference in land cover composition between road-based 

survey areas and random areas in the Adirondacks, and <2% difference elsewhere.  I thus 

considered road-based samples to adequately provide coverage of the ecological conditions 

pertinent to coyotes in the state.  However, I expected coyote density and detectability to differ 

among urban, suburban, and rural environments and for this study urban and dense suburban 

areas were eliminated from the statewide sampling.   

To assess potential road avoidance behavior by coyotes, I compared habitat use and 

availability within discrete distance-from-observer categories (distance bins around road-based 

sample points) using data for 10 GPS-collared coyotes (4 males and 6 females monitored 2007–

2009) from my focal areas (Fig. 1.1).  I retained one independent location per animal per day 

(near midnight), from June–August (coincident with my statewide sampling design), yielding 

807 GPS locations.  I chose three distance bins (0–360 m, 360–720 m, and 720–1080 m), which 

were deemed useful based on the observed responses from my statewide survey and the 

accuracy of my triangulation trials.  To test for a road bias in coyote distribution, I compared the 

proportion of coyote locations in each distance bin versus the proportional area of each bin 
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using a χ2 test.  I repeated this analysis using my triangulated coyote detections from the 

statewide survey (n = 66) as the sample of used locations to test whether I systematically heard 

coyotes at frequencies different than expected based on GPS-collared coyote locations. 

 

Call broadcast equipment 

My call broadcast unit consisted of two, 50-watt Powerhorn loudspeakers (RadioShack®, 

Fort Worth, Texas) paired with a Mini Audio Amplifier (RadioShack®, Fort Worth, Texas) 

connected to a MP300-2G mp3 player (Coby Electronics, Lake Success, New York) via standard 

audio cables.  The two speakers were arranged at a 45 degree angle facing opposite directions 

and mounted on a base plate (design adapted from Varmint Al 2011).  Amplifiers were 

calibrated to a maximum sound pressure level (SPL) of 105 dB (measured at 1 m) during 

playback to standardize surveys across broadcast units and crews.  When broadcasting calls 

during surveys the broadcast unit was placed on the shoulder of the road (on the ground) with 

speakers facing perpendicular to the road direction.  This physical configuration and placement 

allowed calls to be broadcast effectively in both directions while maintaining a consistent 

volume, and allowed the researcher to be separated from the speakers by a distance of 

approximately 10 m to avoid hearing damage.  My call sequence was a combination of group 

yip-howls and single animal howls (sound source: Macaulay Library, Cornell University) that 

lasted 20 seconds and varied in both sound frequency and intensity.  I spliced calls together 

using Audacity® sound editing software (Audacity Team 2009) . 
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Estimating distance to a calling animal 

Prior to conducting formal surveys, I evaluated the precision of locations obtained using 

a 3-person simultaneous triangulation approach (Zimmerman & Powell 1995).  Using my 

broadcast unit, I conducted blind trials at set calling distances, ranging 250–1000 m away from 

road-based observers, in a mixed agriculture-forest landscape characterized by gently rolling 

terrain.  Observers were spaced 500-m apart along the road and were informed prior to a call 

broadcast but did not know from which direction or distance a call might originate.  Each 

observer recorded whether or not they heard the call, and, when heard, they recorded a 

bearing towards the direction of the sound source using a mirrored and declination-adjusted 

compass.  Locations were solved from two to three bearings using Location Of A Signal software 

(Ecological Software Solutions LLC 2009).  I considered a successful location to have either two 

bearings that produced an error polygon < 0.01 km2 or three bearings that crossed.  For each 

trio of observers, I calculated the Euclidean distance between the solved triangulation location 

and the central observer.  I estimated distance from the calling animal to the central observer 

rather than perpendicular distance to the road because each survey represented a point-based 

rather than line-transect survey.  Following this approach, estimated distances had a mean 

linear error of ± 119 m (n = 51 successful locations).  Note that these tests were conducted 

during daytime, acoustically less optimal conditions compared to night-time surveys (Larom et 

al. 1997), and thus provided a conservative estimate of location precision for the statewide, 

night-time sampling.      
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Assessing animal movement in response to the call broadcast 

Previous studies with radio-collared coyotes indicated that movement towards a 

broadcast call may happen after a vocal response, or may preclude a vocal response altogether, 

but is not likely to occur before a vocal response is made (Alcorn 1946; Mitchell 2004).  

Moreover, anecdotal observations of animals approaching broadcast calls indicated a lag time 

of ≥25 minutes (Alcorn 1946; Coolahan 1990), which was longer than the 9-minute duration of 

my broadcast surveys.  Previous studies indicated that group yip-howls had the greatest 

probability of eliciting a vocal response from coyotes as opposed to sirens, human-produced 

howls, and broadcasts of lone howls, (Lehner 1982; Okoniewski & Chambers 1984; Fulmer 

1990; Gaines, Neale & Naney 1995; Mitchell 2004) and were less likely to elicit an approach 

than other stimulus (Mitchell 2004; Hallberg 2007).  Because Mitchell (2004) indicated that 

responses might also vary depending on whether the calling individual was familiar to the 

responder, I attempted to standardize potential response rates as much as possible by using 

coyote vocalizations recorded outside of New York.  Based on these studies I incorporated 

group yip-howls into the broadcast sequence, used calls that would not be familiar to any 

potential responders, and assumed movement responses to be minimal.   

 

Statewide survey design 

I limited my scope of inference to the rural portion of New York State, excluding 

interstate highways and all roads within suburban or urban areas because of sampling 

difficulties and high ambient noise levels.  I expected coyotes to hear and potentially respond to 

call broadcasts when up to approximately 3 km distant (based on a free field sound attenuation 
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rate of -6 dB per doubling distance), although I was likely to hear them only to ~2 km distant 

(based on my triangulation tests that accounted for landscape effects and ambient noise 

conditions).  I further expected that a coyote that responded to a broadcast call once may be 

less likely to do so a second time within the few hours of my evening surveys.  For these 

reasons I spaced my sampling points ≥ 6 km apart (so a given coyote should hear the broadcast 

call only once during a bout of surveying), and using this criterion randomly selected 720 

potential road-based sampling locations statewide.   

Surveys were conducted in summer (June–August 2010), at night (dusk to dawn), and 

during periods lacking wind (≤5 kph) or precipitation – the most acoustically reliable survey 

conditions based on previous studies (Wiley & Richards 1982; Larom et al. 1997; Lengagne & 

Slater 2002; Thompson et al. 2009).  Moreover, June through August has been identified by 

some studies as a peak coyote vocalization response period (Wolfe 1974; Wenger & Cringan 

1978; Okoniewski & Chambers 1984).  

To provide adequate temporal and spatial coverage across the state, I simultaneously 

deployed three field crews of three observers each.  One observer was placed at the central 

survey location and was responsible for call broadcasting while the other two observers were 

stationed 500-m down the road in alternate directions from the central observer.  Observers 

communicated via hand-held radio to synchronize survey start and end times.  After arrival at 

the site, a 2-minute silent acclimatization period allowed for detection of spontaneous 

vocalizations and helped disassociate human noise from the playback session.  For each survey, 

a series of three call cycles were broadcast, with each cycle consisting of the 20-second call 

followed by a 2-minute silent listening period.  The first 20-second call was played at a SPL of 95 
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dB and subsequent calls were played at 105 dB (both measured at 1 m, the  latter representing 

the approximate SPL of a coyote howl; Mitchell et al. 2006).  When a response was detected, 

the broadcast call was stopped, observers noted the time, estimated the number of coyotes 

responding, took a compass bearing to the response, and noted their location with a GPS unit.  

Each observer assigned a qualitative estimate of call quality and ambient noise to aid in 

interpretation of triangulation results.  After all data collection was completed and before 

moving to another location, the number of animals determined to be calling during that survey 

was reached by consensus of all observers.  In the case where more than one coyote group 

responded during a survey, observers recorded bearings to all responses and came to 

consensus on the number of responding groups and number of animals within each.  In all cases 

where a second response was heard and successfully triangulated (n=3), the estimated location 

was in a different direction from that of the first, with no overlap of error ellipses. 

At each survey point, crews recorded both static (land cover, terrain complexity) and 

dynamic survey conditions (temperature, wind speed and direction, moon visibility, cloud 

cover, and barometric pressure) that may influence coyote call propagation and detectability.  

The percent of each of the six previously defined land cover classes were recorded within a 

1,800-m buffer centered on each survey location.  Barometric pressure at the time of each 

survey, and 6 hours prior, was estimated by kriging hourly data from 110 weather stations 

located in and around New York (National Oceanographic and Atmospheric Administration 

2010).  Moon visibility and the timing of moonrise and moonset were documented using data 

from the U.S. Naval Observatory (2010).  Cloud cover was estimated visually in increments of 
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25%.  Wind speed and direction and ambient temperature were recorded with a Kestrel 2000 

weather meter (Nielsen-Kellerman, Birmingham, Michigan). 

 

Statistical analysis 

I used Distance 5·0 Release 2 (Thomas et al. 2010) to estimate the probability of coyote 

detection ( ̂) and density of coyotes within the surveyed areas.  Though group size was 

estimated for each detection, uncertainty in counts occurred when more than three animals 

were responding.  Field personnel also found it difficult to separate pups from adults later in 

the field season.  Importantly, data from Mitchell (2004) indicated that territorial adults are 

much more likely to respond to a call than transients (~48% response rate for territorial adults 

vs. ~12% for transients).  I thus chose to use a cue counting approach and assumed each 

detection represented a single territorial breeding pair.  I estimated a pooled probability of 

detection, assuming detectability to be consistent statewide, although I did test for survey 

covariate effects (barometric pressure, could cover, moon visibility, wind, temperature, and 

qualitative ambient noise level) on  ̂ using the multi-covariate engine within Distance.  

Alternative curves were fit to the probability of detection with the best model selected using 

Akaike’s Information Criterion (AIC; Burnham & Anderson 2002).   

A separate issue from the probability of detection is the probability of availability, i.e., 

what percentage of coyotes that hear broadcast calls are likely to reply vocally (call response 

rates).  Estimates of call response rates have been obtained previously using known (radio-

collared) animals and call playback devices.  Published response rates range from 0·42–0·55, 

and average 0·48 (Fulmer 1990; Mitchell 2004).  A probability of availability, Pv, less than 1 
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violates a critical assumption for distance sampling that can be corrected using a multiplier to 

obtain to final density estimate (Thomas et al. 2006).  The multiplier acts as a scaling factor on 

the overall density estimate.  Inclusion of a multiplier in Distance requires an estimate of 

precision that I could not meaningfully estimate from the two published records of call 

response rates.  As a conservative alternative, I conducted a post-hoc correction by dividing the 

coyote density estimate by the mean response rate (0·48), the upper confidence limit by the 

lowest published response rate (0·42), and the lower confidence limit by the highest response 

rate (0·55). 

I thus produced a detectability- and availability-corrected estimate of the statewide 

density of coyotes.  I evaluated whether my design had sufficient power to detect regional 

differences in coyote abundance by stratifying the density estimate among five ecoregions 

generalized from a GIS layer produced by The Nature Conservancy (Bailey 1997).  Ultimately, 

the total abundance of breeding coyote pairs was calculated by multiplying the statewide 

density estimate by the total rural area of New York State (109,000 km2, excluding urban and 

suburban areas as identified by the NLCD). 

 

Results 

I completed a total of 541 point surveys statewide, detecting coyote responses at 92 

sites (Fig. 1.1).  Of these, I recorded seven spontaneous calls with the remaining animals 

responding with equal frequency among the three call cycles of the broadcasts.  Triangulations 

failed to resolve a location for 17 of the calls detected, commonly when only two observers 

detected a response that was either barely audible or suffered from topographic interference 
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(signal bounce).  Removing the 17 failed triangulation attempts yielded a sample size of 524 

valid surveys and 75 call detections for analysis.  The estimated distance between calling 

coyotes and the central observer were binned into intervals of 360-m to accommodate 

triangulation error and truncated to 1,800 m to improve model fit (removing an additional nine 

responses).  Collared coyotes did not demonstrate any bias in their distribution with respect to 

road-based observation points (χ2 = 1·5, df = 2, P = 0·47; Fig. 1.2a), and so no further 

adjustment of distance bins was required.  Moreover, the frequency of coyotes detected in 

each distance class during surveys was similar to that observed for GPS-collared animals (Fig. 

1.2b), indicating that movement in response to the broadcast calls was not apparent.  The most 

parsimonious model for  ̂, a half-normal function with no adjustment terms (Fig. 1.3a,b), 

slightly outperformed a uniform model with two adjustment terms and an unadjusted hazard-

rate model (∆AIC = 1·41–1·73).  Including site and survey covariates failed to improve model fit, 

although sample size may have precluded detecting such effects.  The half-normal model 

estimated  ̂ = 0·19 (0·03 SE, 95% CI: 0·15–0·25), with an effective detection radius of 790 m. 

From the raw counts of animals detected, average group size was 1·8 coyotes per 

response (SE = 0·15) and ranged 1–6 animals.  Treating each call as representing a single 

breeding pair and using a cue counting approach overcame group size uncertainty and helped 

clarify the scope of inference to territorial pairs.  The pooled, detectability-corrected estimate 

of coyote pair density, before correcting for coyote availability, was 0·63 pairs 10 km-2 (95% CI: 

0·45–0·90, 20·1% CV).  Adjusting for availability (Pv = 0·48) increased the density estimate to 1·3 

pairs 10 km-2 (95% CI: 0·8–2·1) resulting in a statewide population estimate of 14,310 coyote 

pairs (95% CI: 8,719–22,887).  With only 5–21 detections in each ecoregion, the statewide 
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survey design lacked the power to detect statistically significant differences in coyote density at 

a scale smaller than the entire state.    

 

Discussion 

Pairing vocalization surveys with distance sampling provided an efficient and robust 

means of monitoring an elusive but vocal carnivore, the coyote, a species whose abundance is 

of considerable interest and for which traditional means of estimating animal abundance 

remains impractical.  My approach yielded reasonably precise estimates of animal density 

(17·9% CV), and given the efficiency of the design was able to deliver a statewide assessment of 

coyote population status in New York.  I limited my scope of inference to resident, territorial 

coyote pairs because, although the data remain sparse, previous studies indicate that transients 

rarely if ever respond in call-response surveys (Wenger & Cringan 1978; Fulmer 1990; Mitchell 

2004).  Gese and Ruff (1998) investigated spontaneous vocalization rates, as opposed to those 

elicited by a broadcast call, and reported that transient animals were consistently non-vocal as 

well.  Importantly, territories are likely most stable during summer (the pup-rearing period) and 

territory size, and by extension territory density, is reflective of local habitat quality.  Thus, 

monitoring territorial coyote pairs in summer may best represent the long-term carrying 

capacity of the landscape.  However, local habitat quality will also affect pregnancy rates, pup 

production and survival, and so local densities of coyotes may vary more than indicated by the 

density of coyote pairs.  Nevertheless, territorial pairs are the population segment driving 

annual changes in coyote numbers through reproduction and distance sampling for breeding 

adults linked to a measure of pup production (e.g. den counts) should efficiently track changes 
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in total population size.  Importantly, using distance sampling to correct for differential 

detectability of calling animals allows managers to track changes in populations with more 

certainty, providing a powerful new tool for monitoring elusive carnivore populations. 

The difficulty of estimating coyote density using more traditional survey techniques has 

led to few published density estimates, limiting my ability to compare coyote density among 

regions or contrast accuracy and precision among different methodologies.  For example, my 

estimate of coyote pair density was 1·6–5·7 times lower than summer density estimates from 

western states (Wyoming, Camenzind 1978; Montana, Pyrah 1984) and provinces (Alberta, 

Bowen 1981) acquired using den counts and telemetry methods.  However, gross differences in 

scale alone between these former studies (~96–1,243 km2) and ours (109,000 km2) may 

account for the observed magnitude of difference in coyote density.  Importantly, a distance-

sampling approach provides a more cost-effective method for monitoring changes in coyote 

numbers compared to telemetry-based, noninvasive-genetic, or CMR approaches, and thus 

opens the door to increasing our understanding of the spatio-temporal dynamics of coyote 

density, its drivers, and population responses to management actions. 

 Given my large-scale sampling design, which resulted in only 5-21 detections per 

ecoregion, I was unable to quantify regional differences in coyote detectability and instead 

estimated a single pooled detection probability.  Estimating a separate detection function for 

say the gently rolling and sparsely forested Lake Plains separate from the rugged and densely 

forested Adirondack Mountains would require acquiring approximately 60-80 detections in 

each region.  If these regions vary in call detectability, which they probably do, then a stratified 

or area-specific detection function would improve the accuracy and precision of density 
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estimates.  Adaptation of the approach to smaller geographic extents would require a minimum 

of 10–20 independent sampling stations and, again, a sufficient number of detections to 

produce a precise density estimate (Buckland et al. 2001).  In a given evening, I recommend 

sampling locations be spaced ≥ 6-km apart to insure sampling independence given that coyotes 

may hear and respond to a broadcast call up to 3-km distant but we are likely to hear that 

response only within 2 km.  For smaller study areas repeated sampling of locations over time 

will likely be required, and these samplings should be spaced apart in time to avoid habituating 

resident animals to the calling device (Wolfe 1974; Mitchell 2004). 

Applying my approach to other settings (e.g. suburbia) or time periods (e.g. winter, 

when harvest and dispersal occurs), or extending the scope of inference to the total population 

(including transients) poses additional challenges.  Aural surveys are much more challenging in 

urban and peri-urban environments where high ambient noise levels result in decreased 

detection rates (Patricelli & Blickley 2006; Pacifici, Simons & Pollock 2008; Pohl et al. 2009).  

Moreover, in suburban areas, substantial interest from local authorities and others sensitive to 

close proximity carnivore vocalizations can hinder survey efforts.  Conducting vocalization 

surveys during different seasons would require additional information to account for seasonal 

variation in call response rates as well as differences in sound attenuation rates, and therefore 

call detectability.  For coyotes, wolves, jackals, and canids in general, most social 

“reorganization” occurs during the late fall to early winter period when juveniles disperse and 

survivors find a mate and establish a new territory (a status likely to respond to a call) or remain 

transient (a status not likely to respond to a call).  Importantly, even in rural areas 
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anthropogenic influences, such as hunting using commercial game callers, may decrease vocal 

responses by animals.   

Of particular interest to game managers is the contribution of transient animals to 

population density estimates.  Given the low vocal response rates observed for non-resident 

coyotes in previous studies (Fulmer 1990; Gese & Ruff 1998; Mitchell 2004), transient 

contributions to overall density are unlikely to be quantified using vocalization surveys.  

However, studies of coyote social ecology in fall have found that transients generally comprise 

a relatively small proportion of the total population (9%–15%; Camenzind 1978; Andelt 1985; 

Gese, Rongstad & Mytton 1989), although their numbers may be dependent on local prey 

availability and harvest pressure.   Though transients are an important component of a true 

population estimate, territorial pairs are the drivers of local changes in density.  If identification 

of population trends over time were the main objective, the fact that transients are likely not 

represented by my approach would indeed be an asset rather than a limitation. 

Beyond ecological challenges, the most “expensive” part of my survey design was the 

need for three observers to triangulate to a calling animal.  Ongoing work aims to remove this 

limitation by modeling a spatially-explicit, standalone probability of detection model based on 

sound attenuation.  Such a model would enable a fine-scale spatially-explicit estimate of 

detectability, and by extension a spatially-explicit estimate of density, even from a broad-scale 

survey design such as ours.  Nevertheless, distance sampling via triangulation to calling animals 

provides an efficient means of monitoring elusive, non-individually identifiable, and wide-

ranging carnivores with more certainty than has been previously available.  This approach 

should be readily extendable to other reliably vocal species provided responses to call 
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elicitations are either well known or can be quantified to insure distance sampling assumptions 

are reasonably met. 
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Figure 1.1.  The study area for coyote distance sampling in New York State.  Map indicates 

generalized ecoregions (LP = Lake Plains, AP = Allegheny Plateau, NRV = Northern River Valleys, 

ADK = Adirondack Mountains, HRV = Hudson River Valley), focal study areas containing GPS-

collared coyotes (boxes), and survey locations and outcomes (● coyote response detected, ■ no 

coyote response detected). 



26 

 

Figure 1.2.  Proportion of coyote locations (dark bars)and available habitat (white bars) within 

specific distance categories away from road-based observation points for (a) GPS-collared 

coyotes and (b) triangulated survey responses (χ2 = 1·5, df = 2, P = 0·47).  Distance categories for 

point-based surveys include areas along the road as well as away from it.
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Figure 1.3.  (a) Probability of detecting a vocalizing coyote ( ̂) by distance from observer (m) for 

road-based coyote vocalization surveys in New York State, June to August 2010 (n = 66 coyote 

responses).  (b) Probability density function showing the relationship between density and area 

surveyed for a point  
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Chapter 2 

Modeling a spatially-explicit probability of detection for call-based animal surveys 

 

Summary 

1.  Vocalization surveys are commonly used to provide indices of animal abundance, and when 

paired with distance sampling may provide a detectability-corrected estimate of actual animal 

abundance with precision.  Distance sampling for animals detected aurally rather than visually 

poses unique sampling challenges because estimating distance to a sound source based on 

perceived sound quality alone is unreliable due to the interactive effects of land cover, terrain, 

and ambient noise on sound quality.  Hansen (2013) overcame this limitation using a 

triangulation approach for coyotes that, although successful, would be logistically challenging 

for routine monitoring. 

2.  Herein, I remove the need for estimating distance altogether in vocalization surveys by 

creating a spatially-explicit and standalone model for the probability of detecting a vocalizing 

animal based on the physics of sound propagation over heterogeneous landscapes.  The model 

was parameterized for coyotes Canis latrans in New York State for comparison to the distance 

sampling approach of Hansen (2013).   

3.  I used SPreAD-GIS to evaluate whether the sound propagated from a hypothetical calling 

coyote would be detectable by an observer at a given distance.  Model predictions were 

validated in blind field trials and then applied to 101 sampling locations statewide.  For each 

location I calculated the probability of detecting a calling coyote,  ̂, as the proportion of 198 

random calls originating within 2 km of a central observer that reached the observer and 
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remained above ambient noise levels.  Site-specific  ̂ values were then regressed against a suite 

of terrain and land cover variables to produce a statewide, spatially-explicit and standalone 

model of  ̂ used to correct the vocalization counts of Hansen (2013). 

4.  Field tests indicated high correspondence between empirical and modeled coyote 

detectability (Cohen’s W = 0·88, P < 0·01).  The standalone model yielded a mean  ̂ = 0·27 (2·7% 

CV), which was significantly larger and more precise than the pooled distance sampling 

estimate of Hansen (2013;  ̂ = 0·19, 13·5% CV).  Applied to call-response surveys, the 

standalone model produced a slightly lower and considerably more precise estimate for coyote 

density than did distance sampling, and indicated regional trends in abundance previously 

masked by the statewide distance sampling approach.  

4. Synthesis and applications.  Modeling sound propagation based on first principles enabled a 

standalone, and spatially-explicit estimate for detectability of animal vocalizations.  With such a 

model, a single observer need record whether an animal is heard (and how many) without the 

complication and uncertainty associated with estimating distance to the calling animal.  The 

approach is broadly applicable to a range of species from songbirds to marine mammals and 

reliably vocal terrestrial mammals, greatly expanding the utility of vocalization surveys for 

monitoring animal populations. 

 

Introduction 

 Population estimates have long been the focus of wildlife managers trying to determine 

where best to allocate their limited time and resources.  Estimates of animal abundance or 

density serve as valuable benchmarks for informing management decisions and gauging 
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population response to management actions.  Given the uncertain status of many species, 

widespread declines in habitat area or quality, and ever-tightening budgets for conservation, 

greater precision and efficiency in population estimates become increasingly important.  Yet 

the cost and geographic restrictions associated with actual population estimates, which require 

counts of animals to be corrected by an estimate of animal detectability, lead many managers 

to rely on more easily obtained estimates of relative abundance.  However, the detectability of 

animals may vary over space and time (Bibby & Buckland 1987; Buckland 2006; Marques et al. 

2010), and without correcting for detectability managers cannot know whether differences in 

index values represent real differences between populations or differences in animal 

detectability alone. 

Methods to correct raw counts of animals for those missed during a survey generally 

involve some form of double-counting (Seber 1973), standalone sightability models (Samuel et 

al. 1987), capture-mark recapture methods (CMR; Otis et al. 1978), or distance sampling 

(Thomas et al. 2010).   For studies that commonly rely on the aural detection of animal 

presence, e.g. cetacean and bird surveys (Buckland 2006; Marques et al. 2009), distance 

sampling has proven especially useful.  Recently, distance sampling has been successfully 

applied to vocalizing terrestrial mammals such as African forest elephants Loxodonta Africana 

cyclotis (Thompson et al. 2009), titi monkeys Callicebus discolor (Dacier et al. 2011), and 

coyotes Canis latrans (Hansen 2013).  An important assumption for the use of distance 

sampling is precise measurement of the distance between the calling animal and the observer.  

Alldredge, Simons and Pollock (2007b) demonstrated that distance estimates based solely on 

perceived sound quality may be grossly biased, yielding estimates that over- or under-estimate 
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population size depending on whether distance errors are biased toward or away from the 

observer.  Recent technological and analytical advances have allowed researchers to improve 

distance estimates for songbirds using small microphone arrays and individual song signatures 

in a spatially explicit capture-recapture approach (SECR; Dawson & Efford 2009).  In a larger-

scale study involving a vocal carnivore, three simultaneous observers were used to triangulate 

on calling animals (Hansen 2013).  Although successful, these approaches may remain 

logistically infeasible or cost-prohibitive for routine population monitoring.  To the best of my 

knowledge, standalone detection models have not been employed in acoustic surveys despite 

considerable knowledge of the properties governing sound propagation that could be exploited 

to develop such a model. 

Although the physics of sound propagation and its role in detecting vocalizing animals 

have been studied across a spectrum ranging from low-frequency callers such as elephants and 

cetaceans (Langbauer et al. 1991; Thompson et al. 2009) to high-frequency callers such as 

songbirds (Wiley & Richards 1982; Schieck 1997; Hobson et al. 2002; Alldredge, Simons & 

Pollock 2007a; Dawson & Efford 2009), little research has been done to explicitly model sound 

attenuation over heterogeneous landscapes for use in call-based surveys.  The rate at which 

sound attenuates over space is determined by several highly localized factors that can be used 

to predict the acoustic qualities of an area of interest.  The main factors affecting attenuation 

are spherical spread (given a -6 dB decrease per doubling distance), absorption by the 

atmosphere, and reflection by vegetation or other interceding landscape features.  Topography 

can serve as an outright barrier to sound but also may enhance the distance sound travels 

depending on the elevation of the sound source relative to the receiver (Marten & Marler 1977; 
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Embleton, Piercy & Daigle 1983; Forrest 1994).  Porous ground substrates such as leaf litter, 

tilled fields, or even a fresh blanket of snow may dampen sound propagation (Marten & Marler 

1977) whereas compacted surfaces (e.g. roads, trails, playas, or bare rock) may enhance 

propagation (Forrest 1994).  Humidity and ambient air temperature affect the absorption of 

sound differently depending on sound frequency (Harris 1966), and wind can cause sound to 

become highly directional (Thompson et al. 2009).  Moreover, the signature of animal 

vocalizations can be swamped by the din of surrounding noise (Wiley & Richards 1978), such as 

the rush of rivers and streams, traffic-related noise along roads, or the cacophony of other 

vocalizing animals.  For these reasons, sound attenuation patterns are highly heterogeneous, 

affecting an observer’s ability to detect a calling individual and judge distance to that calling 

individual.  While the physics of sound attenuation are well understood, the complexity of 

modeling these influences over heterogeneous landscapes has likely curtailed creation of 

standalone and spatially-explicit sound detection models. 

Recently, the System for the Prediction of Acoustic Detectability was adapted to 

incorporate spatially explicit land cover, terrain, and local weather data into predictions of 

sound propagation from a given location (SPreAD-GIS; Reed, Boggs & Mann 2012).  The original 

application modeled the propagation of vehicle-related noise from roadways into adjacent 

natural areas.  Herein, I used the tool to model sound propagation from vocalizing animals 

within the range of human hearing to a centrally located observer to calculate the probability of 

detecting animals in call-based surveys.  I parameterized the acoustic properties of the model 

for coyotes within New York State, and contrasted estimates of the probability of detecting a 
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calling coyote ( ̂) and consequent coyote density estimates from call-based surveys that 

employed distance sampling (Hansen 2013) versus my standalone call detection model. 

 

Materials and methods 

Study area 

Empirical field trials of sound detectability were completed during summer 2010 at the 

Carlton Hill Multiple Use Area in western New York State, U.S.A. (42˚50’45”N, 78˚09’04”W).  

The area was typical of the Southern Tier of New York state, with rolling hills (370–470 m 

elevation) covered by a mix of deciduous forest and agricultural lands.  I ultimately modeled 

sound propagation across New York State, throughout the Southern Tier as well as the forest-

dominated and rugged terrain conditions of the Adirondack and Catskill Mountains, the patchy 

forest and rolling landscapes of the Hudson Valley, and the agriculturally-dominated and 

topographically-flat Lake Plains (see Hansen 2013 for full study area description). 

 

Modeling sound propagation 

 Animal vocalizations may be complex, exhibiting a wide range of frequencies and sound 

pressure levels.  To understand these patterns for coyotes, I used Raven Pro software (Cornell 

Lab of Ornithology, Ithaca, New York) to perform a spectrograph analysis of a splice of several 

recorded coyote calls from the Macaulay Sound Library at Cornell University.  This spliced call 

sequence was used in the call-response surveys for coyotes by Hansen (2013).  The 

spectrograph analysis indicated a dominant frequency of 1 kHz.  I further assumed the sound 

pressure level  (SPL) of a vocalizing coyote to be 105 dB (measured at 1 m) as reported by 
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Mitchell et al. (2006).  These values were the fixed sound inputs for SPreAD-GIS (Reed, Mann & 

Boggs 2010), a freeware tool available for ArcGIS 10 (ESRI, Redlands, California).  Other fixed 

inputs for SPreAD-GIS included temperature (°C) recorded during field surveys using a Kestrel 

2000 weather meter (Nielsen-Kellerman, Birmingham, Michigan) and relative humidity acquired 

from the closest available weather station (weatherspark.com) corresponding to the timing of 

the survey.  Wind measurements were uniformly set to zero due to the need to apply a single 

averaged value to all points.  Variable landscape inputs to SPreAD-GIS included 2006 National 

Land Cover data (Fry et al. 2011) and a 1-arc-second Digital Elevation Model (DEM; Gesch 2007) 

resampled to 30 m resolution.   

SPreAD-GIS modeled the propagation of sound out from the sound source, producing a 

continuous grid to a specified distance threshold.  Grid output values indicated the SPL (in dB) 

reaching each cell.  Following Reed, Mann and Boggs (2010), land cover values were used to 

evaluate ambient noise levels within each cell.  Assuming light or no wind, I estimated ambient 

noise SPLs in the range of 18–24 dB (see Appendix I).  Final SPreAD-GIS output values were the 

predicted audible sound levels in excess of ambient noise conditions.  I assumed that any non-

zero grid value represented a detectable animal call by a human observer located at that cell.   

To better represent the actual area sampled around a given survey point (i.e. the area 

within which I could generally expect a coyote to hear a broadcast call) and standardize sample 

area across all points, I used sound models from 88 survey locations to estimate a maximum 

expected sound detection threshold radius.  A cumulative distribution curve of the resulting 

radii indicated that 98% of all broadcast calls would propagate out to no more than 2 km.  This 
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2 km threshold was thus used to establish a constant sample area for all subsequent 

propagation models. 

 

Empirical test of SPreaD-GIS for animal calls 

To empirically validate SPreAD-GIS predictions, I conducted 132 blind field trials 

involving six observers and 28 fixed call locations.  Assuming the maximum distance to which 

humans may hear a calling coyote to be 2 km, call locations were selected from a grid of 

possible points spaced 250-m apart to a maximum distance of 2 km.  Observers were stationed 

at 500-m intervals along a road running through the center of the grid (Fig. 2.1a).  From a given 

grid point, technicians equipped with a call broadcast unit played a series of lone howls and 

group yip-howls for a 20-second duration.  The call was broadcast twice from each location, and 

road-based observers recorded whether they heard the call.  Observers knew when the call was 

being played but did not know the direction or proximity of the technician playing the call.  I 

assigned a value of 1 when a call was detected, and 0 otherwise.   

 For comparison, the SPreAD-GIS model was run from each of the 28 fixed call locations 

using temperature recorded in the field and the sound parameters specified previously (Fig. 

2.1a).  For each trial, I recorded whether each observer was predicted to detect the calling 

animal at the observation point (assigning 1 given dB value above ambient levels, 0 otherwise).  

Modeled and empirical detections were compared using the Cohen’s W correlation coefficient. 
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Spatially-explicit probability of detection for sound 

Calculating  ̂ at a given survey location required modeling the propagation of sound 

from all possible calling coyote locations to a central observation point.  To accomplish this, I 

overlaid a hexagonal grid with cell center points spaced 250 m apart on a given survey site to 

yield 198 equally-spaced potential coyote locations within hearing distance of the central 

observer (Fig. 2.1b).  For each of the 198 locations, SPreAD-GIS modeled the soundshed, i.e. all 

cells within hearing distance of the fixed sound source where sound levels remained above 

ambient noise.  I recorded a “detection” at the central observation point when a given 

soundshed overlapped the observer (and recorded a non-detection otherwise).  I calculated a 

soundshed estimate of detection probability ( ̂ ) as the number of recorded detections / 198 

attempts.  It should be noted that the area within which a broadcast call could be expected to 

be heard and responded to may not reach all 198 potential response points.  However, this 

difference in “elicitation soundshed” (i.e. the area around a call-response survey location within 

which an animal can hear the broadcast call and therefore potentially respond) between 

individual points should not greatly affect point specific density estimates assuming that the 

ratio of  ̂  to area sampled remains constant.  Situations in which that ratio is not constant (i.e. 

modeled “responses” are identified as “detected”  within the 2 km sample area but fall outside 

of the actual elicitation soundshed of the survey location) require further investigation but are 

expected to be minimal based on preliminary analyses.  

To create a standalone model of  ̂ for comparison to the distance sampling approach of 

Hansen (2013) required estimating  ̂ at 541 actual coyote survey locations across the state of 

New York.  However, using SPreAD-GIS to model the soundshed from a single location required 
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2 minutes to complete (roughly 6 hours per location to estimate  ̂ ).  This, modeling the 

soundshed for all 541 locations appeared time prohibitive, so I decided to model a subsample 

of locations and use raster calculations to predict detection at a larger set of points.  I 

undertook this in two stages, first calculating  ̂  at a sample of survey locations that varied in 

terrain complexity and land cover conditions (n = 101 locations), including sites where coyotes 

were detected (n = 59) and sites where coyotes were not detected (n = 42) by Hansen (2013).  I 

regressed  ̂  values from the 101 modeled survey locations against a suite of landscape metrics 

to produce a predictive model for  ̂ applicable to any potential survey location.  Candidate 

models included combinations of terrain ruggedness (percent coefficient of variation of 

elevation), proportion of area forested, elevation of the observer location, and ecoregion along 

with second-order polynomial terms (to allow non-linear relationships) and interaction terms 

for terrain and elevation, and terrain and ecoregion.  For this analysis, GIS datasets (composed 

of 30-m continuous grids) were resampled to 90 m to decrease processing time.  Landscape 

metrics were quantified within a 2-km radius buffer around the central survey location, as well 

as a 1-km buffer representing nearby effects only, using neighborhood analyses in ArcGIS to 

compare radii using AIC.  I fit beta-logistic models (Kieschnick & McCullough 2003; Ferrari & 

Cribari-Neto 2004; Buis, Cox & Jenkins 2011) using betafit in Stata 9 (StataCorp 2005),  and 

compared candidate models using Akaike’s Information Criterion (AIC; Burnham & Anderson 

2002).  Goodness-of-fit of the most parsimonious model was assessed using Wald’s Chi-square 

statistic.  For clarity, I denote regression model predictions using  ̂ . 
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Comparison of distance sampling with stand-alone detection model 

Using the most parsimonious regression model, I predicted  ̂  for each 90-m cell in New 

York State, and extracted  ̂  at the 524 survey locations of Hansen (2013), which included 66 

sites where coyotes were detected in the 2010 field surveys.  Following Hansen (2013), I 

considered all detections of coyotes (irrespective of the total number heard) to represent a 

single breeding pair.  Using the standalone model for detectability, I calculated the density of 

coyote pairs as:  

 ̂    

∑ (
 
 ̂ 
)
 

 
   

   
                                                                                                                                   

where n = total number of detections across all surveys (assuming each represents a breeding 

pair),  ̂  = the probability of detection at site i, a = area sampled at each point (12.6 km2 based 

on 2-km radius), and k = number of points sampled (524).  The standard error for the density 

estimate was calculated using the delta method (Seber 1973) as:  
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To make these estimates comparable to those derived from distance sampling, I 

accounted for the probability of availability (i.e. what percentage of coyotes that hear 

broadcast calls are likely to respond vocally) using the values and approach reported by Hansen 

(2013).  This entailed dividing the  ̂ point estimate by 0·48, the upper and lower confidence 

limits by 0·42 and 0·55, respectively, based on the range of published coyote response rates 

(Fulmer 1990; Mitchell 2004).  I compared my point estimates of  ̂ and  ̂ to those of Hansen 



39 

(2013) using a two-sample t-test, and plotted variation in these parameters by ecoregion using 

a generalized layer acquired from The Nature Conservancy (Bailey 1997). 

 

Results 

SPreAD-GIS predictions of coyote call detectability correlated well with empirical 

detections in blind field trails (Cohen’s W = 0·88, P < 0·01, N = 132).  Using SPreAD-GIS to model 

site-specific call detection at 101 sites across New York State yielded  ̂  values ranging 0·08–

0·91.  Mean  ̂  values were not significantly different in areas where coyotes were and were 

not heard (t = -1·01, df = 96, P = 0·31).  Call-based surveys may yield non-detection from either 

poor detectability or lack of a coyote vocalization altogether, so the lack of detection of animal 

calls in the field cannot be used to validate model predictions of animal detectability per se.  

Nevertheless, the lack of difference in  ̂  between the detection sites and non-detection sites 

indicated that our selection of sites chosen to model  ̂  were unbiased by differences in 

detectability. 

Regression models relating  ̂ to local landscape conditions indicated that landscape 

properties in close proximity (1-km radius) were more strongly related to call detectability than 

were properties of the larger landscape (2-km radius; ΔAIC ≥ 21.9, Table 2.1).  Models including 

the effects of forest cover, terrain complexity, and elevation of the observer outperformed 

simpler models (ΔAIC ≥ 14·09, Table 1), and the highest-ranked model (Table 2.2) explained a 

significant amount of variation (Wald χ2 = 199, df = 7, P < 0·01; Fig. 2.2).  Increasing percent 

forest cover predictably reduced call detectability (Table 2.2).  Terrain complexity of the 

surrounding area had a nonlinear effect on call detectability with the greatest detectability 
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predicted at the lowest complexity, a rapid decline in detection as complexity increased, and a 

slight increase in detection indicated at the upper limit of the modeled complexity values (Fig. 

2.3).  Terrain complexity also interacted with elevation of the survey location such that 

detection increased at high elevations when terrain complexity was at either end of the range 

on complexity values but decreased at intermediate values (Fig. 2.3).  At low elevations, 

detection probabilities were greatest with low terrain complexity and decreased rapidly as 

terrain complexity increased, similar to the relationship indicated by terrain complexity alone 

(Fig. 2.3).  Applying the model to the landscape indicated that the highest probability of call 

detection occurred in the northern half of the Northern River Valleys and in scattered parts of 

the Hudson River Valley (Fig. 2.4).  The Lake Plains region and remainder of the Northern River 

Valleys generally had moderate probabilities of detection whereas much of the Adirondack Park 

and the Alleghany Plateau had low detection rates (Fig. 2.4).   

Extracting  ̂  values at the 541 survey locations of Hansen (2013) yielded an overall 

mean value for  ̂  (0·27, 2·7% CV) that was significantly higher and more precise than the 

distance sampling  ̂ (0·19, 13·5% CV, t = 2·96, df = 75, P < 0·01).  Whereas the 66 coyote 

detections of Hansen (2013) were too few to evaluate region-specific differences in coyote 

detectability using distance sampling, our approach indicated large differences in coyote 

detectability among regions being roughly twice as high in the Lake Plains and Northern River 

Valleys compared to the Adirondack Mountains and Hudson River Valley (Fig. 2.5a).  Using  ̂  to 

correct raw counts of coyotes from the statewide call-response surveys, we estimated a lower 

and more precise density of territorial pairs in the state (0·87 coyote pairs 10 km-2, 95% CI: 

0·64–0·94) than did distance sampling (1·3 coyote pairs 10 km-2, 95% CI: 0·8–2·1; Hansen 2013).  
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Precision of ecoregion-specific estimates also increased compared to Hansen (2013, Fig. 2.5b), 

indicating a trend towards higher density populations in the Adirondack Mountains compared 

to the Lake Plains regions that was not apparent from the broad-scale distance sampling survey 

(Fig. 2.5b).  Moreover, the spike in coyote detections observed in the Northern River Valleys by 

Hansen (2013) was likely driven in large part by the grossly higher probability of detecting 

coyote calls in that region rather than to a difference in coyote density (Fig. 2.5a,b). 

 

Discussion 

I demonstrated how the first principles of sound propagation can be used to 

meaningfully predict the probability of call detection for aural surveys of animal occurrence.  

The freeware SPreAD-GIS tool (Reed, Boggs & Mann 2012) combined with readily available 

spatial data make this process accessible for a variety of applications.  My specific application to 

call-response surveys for a wide-ranging mammalian carnivore demonstrated several 

advantages over traditional distance sampling, such as finer-scale inference, reduced bias and 

increased precision in population estimates, and a greatly streamlined field survey effort.   

Animal detectability is often heterogeneous over space and time (Bibby & Buckland 

1987; Schieck 1997; Alldredge, Simons & Pollock 2007a).  However, gaining sufficiently detailed 

information to model animal detectability with precision is difficult, especially for wide-ranging 

species for which detections may be too few to resolve site-specific influences.  For this 

application, a two-stage approach to creating site-specific probabilities of detection involved 

modeling sound propagation for a large sample of survey locations and then predicting call 

detectability as a function of readily-measurable landscape covariates.  Spatially-explicit 
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detection probabilities were on average higher and more precise than achieved via distance 

sampling (Hansen 2013), and consequently yielded more precise estimates of coyote density.  

Given sufficient survey intensity, distance sampling would theoretically be able to capture the 

spatial variation in call detectability (Buckland et al. 2001) that we modeled using SPreAD-GIS.  

However, intensive resampling of locations using call-response surveys may influence animal 

behavior (e.g. habituation to calls, avoidance of survey locations) that might undermine efforts 

to model spatially-explicit detectability using distance sampling (Wolfe 1974; Mitchell 2004).  

Moreover, estimation of distance with precision for calling animals requires some physical 

means of measuring distance because perceived call quality alone is insufficient (Buckland et al. 

2001; Alldredge et al. 2008).  Three observers triangulating on calling animals (see Hansen 

2013), although useful, is a large expense in terms of time and labor that is likely prohibitive for 

routine population monitoring.  Removing the need to estimate distance by creating a 

standalone detection model may therefore greatly extend the utility of call-based surveys for 

population monitoring by reducing the necessary field effort while also increasing the spatial 

resolution of population inferences.   

The model reported herein will generally be applicable to future coyote surveys in New 

York State provided the standardized protocols and timing of the Hansen (2013) surveys are 

replicated.  The climate conditions during other seasons, like winter, will exert different 

influences on sound propagation and our entire modeling process should be repeated to create 

a standalone model specific to the season.  Even for summer-based coyote surveys, it is 

important to note that the statewide detectability model I produced has not been fully vetted 

with controlled field tests.  Whereas I tested whether SPreAD-GIS would reliably propagate the 
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sound of a coyote call from a single point to an observer, I was unable to validate the broad-

scale predictions of coyote call detectability across heterogeneous New York State.  A field 

approach similar to the blind trails conducted herein (Fig. 2.1a) should be replicated across a 

range of predicted detectability values before wholesale adoption of our standalone model.  

Likewise, extrapolation of our model to neighboring regions should be validated for local 

conditions. 

With respect to other species and systems, the key limitation of the soundshed 

approach may be availability of land cover and elevation data at a suitable resolution.  Readily 

available landscape data from the U.S. Geological Survey and other national or international 

sources may be most useful for long-distance vocalizers such as mid- to large-bodied terrestrial 

mammals (McCarley 1975; Mitani & Stuht 1998; McComb et al. 2003), marine mammals, and 

perhaps some avian species (Morton 1975; Mack, Jones & Nelson 2003).  However, aural 

surveys are most commonly used for songbirds, whose high frequency calls attenuate quickly 

over space and are generally detectable only within ~100–300 m (Morton 1975; Wolf, Howe & 

Davis 1995; Alldredge, Simons & Pollock 2007b).  Although my modeling approach is equally 

applicable to short-range vocalizations its utility will obviously be limited by the resolution of 

available spatial data.  However, should sufficient spatial and weather data be available, an 

interesting potential application of sound propagation modeling is correcting historical surveys 

to better track changes in populations over time.  

As evidenced here, acoustic density estimation is a rapidly evolving area of research 

(Marques et al. 2012) and has already provided unique solutions to some of the most daunting 

logistical and ecological challenges facing population surveys today.  Passive acoustic 
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monitoring has given us a window into the population biology of cetaceans (Marques et al. 

2009; Kusel et al. 2011), elephants (Payne, Thompson & Kramer 2003; Thompson et al. 2009; 

Thompson, Schwager & Payne 2010), and avian species (Dawson & Efford 2009) that are 

otherwise challenging to monitor.  SPreAD-GIS provides an invaluable tool for modeling 

soundsheds.  Although the original application was modeling propagation of noise from a point 

into surrounding areas, I demonstrate its utility for modeling propagation of sound from many 

possible points to a central observer.  Biologists have thus far used data from real-time field 

observers, microphone array installations, and hydrophones to build pictures of detection 

probabilities for calls for use with distance sampling , CMR, and SECR  frameworks.  My GIS-

based approach is yet one more way to look at acoustic detectability, one that is adaptable to 

many taxa and systems.  Moreover, removing the need to estimate distance altogether in aural 

surveys has the potential to open surveys up to citizen science applications because having a 

standalone correction model requires an observer merely to recognize the call of the target 

species and, if needed, evaluate the number of calling animals. 
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Table 2.1.  Beta logistic regression models for predicting the probability of detecting a coyote response at a given location (n = 101).  

Top models are shown with number of estimable parameters (K), model log-likelihood (LL), change in Akaike’s Information Criterion 

(Δ AIC), and model weight (ωi). 

Rank Model components K LL Δ AIC ωi 

1 Forest-1k1, Terr-1k2, TerrSq-1k3, Elev4, Terr-1kxElev5, Reg-LP6, Terr-1kxReg-LP7 9 93·5 0·0 0·77 

2 Forest-1k1, Terr-1k2, TerrSq-1k3, Elev4, Terr-1kxElev5, Reg-LP6 8 91·3 2·5 0·22 

3 Forest-1k1, Terr-1k2, TerrSq-1k3, Elev4, Terr-1kxElev5 7 87·2 8·6 0·01 

4 Forest-2k8, Terr-2k9, TerrSq-2k10, Elev4, Terr-2kxElev11, Reg-LP6, Terr-2kxReg-LP12 9 82·6 21·9 0·00 

5 Forest-1k1, Terr-1k2, TerrSq-1k3, Elev4, Reg-LP6 7 74·8 33·4 0·00 

6 Forest-1k1, Terr-1k2, TerrSq-1k3, Elev4 6 73·2 34·6 0·00 

7 Forest-1k1, Terr-1k2, TerrSq-1k3 5 66·1 46·8 0·00 

8 Forest-2k8, Terr-2k9, TerrSq-2k10, Elev4 6 66·1 48·9 0·00 

9 Forest-1k1, Terr-1k2, Elev4 5 64·2 50·5 0·00 

10 Forest-1k1, Terr-1k2 4 56·1 64·7 0·00 

11 Terr-1k2, TerrSq-1k3 4 51·3 74·3 0·00 

12 Terr-1k2 3 48·2 78·7 0·00 

13 Forest-2k8 3 47·2 80·5 0·00 

14 Forest-1k1 3 43·4 88·1 0·00 

15 Terr-2k9 3 41·8 91·4 0·00 

16 Elev4 3 43·5 94·0 0·00 
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1 Percent forest within 1 km of survey point. 

2 Terrain complexity represented by the coefficient of variation of elevation within 1 km of survey point. 

3 Terr-1k squared. 

4 Elevation (in meters) at survey point. 

5 Interaction term between Terr-1k and Elev. 

6 Ecoregional variable specifying the Lake Plains ecoregion. 

7 Interaction term between Terr-1k and Reg-LP. 

8 Percent forest within 2 km of survey point. 

9 Terrain complexity represented by the coefficient of variation of elevation within 2 km of survey point. 

10 Terr-2k squared. 

11 Interaction term between Terr-2k and Elev. 

12 Interaction term between Terr-2k and Reg-LP. 
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Table 2.2.  Highest-ranked beta logistic regression model for predicting the probability of detecting a coyote response ( ̂s) in New 

York State. 

Model variables     β     SE  z  P 

        

Landscape variables        

Forest (% within 1 km of survey point) -1·7  0·3  -6·1  ≤ 0·01 

Terrain complexity (%CV of elevation within 1 km of survey point) -59·1  6·5  -9·1  ≤ 0·01 

Terrain complexity squared 181·7  26·7  6·8  ≤ 0·01 

Observer elevation at survey point (meters/1,000) -4·9  0·6  -7·8  ≤ 0·01 

Lake Plains ecoregion -0·9  0·3  -3·5  ≤ 0·01 
        

Interaction terms        

Terrain complexity x observer elevation 72·4  11·3  6·4  ≤ 0·01 

Terrain complexity x ecoregion 11·6  5·3  2·2  0·03 
        

Constant  2.8  0·3  9·3  ≤ 0·01 
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Figure 2.1.  Layout of points used for SPreAD-GIS coyote aural detection model validation and 

application.  (a) Empirical tests of coyote calls emitted from 28 locations (black circles) and 

listened for by 6 roadside observers (stars).  Shaded regions indicate hypothetical SPreAD-GIS 

results for two locations (triangles), indicating that a call from the dark gray location but not the 

light gray location should be detectable by observers.  (b) Estimation of site-specific probability 

of detection was based on sound propagation from 198 uniformly placed locations (black 

circles) to a central observation point (star).  Sound-sheds that overlapped the observer (e.g. 

two out of the three shaded areas shown) were counted as detections.    

250 m 

a) 

250 m 

b) 
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Figure 2.2.  Correlation (with 95% prediction intervals) between SPreAD-GIS modeled 

detectability,  ̂s, and beta-logistic model predictions,  ̂r with a 1:1 correlation (dashed line) for 

comparison. 
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Figure 2.3.  Partial slopes showing effects of terrain complexity alone (solid black line) and the 

interaction between terrain complexity and observer elevation on probability of detecting a 

coyote call,  ̂r, given low elevation (90 m, gray dotted line) and high elevation (547 m, gray 

dashed line). 
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Figure 2.4.  Predicted probability of detecting a calling coyote,  ̂r, in New York State and 

generalized ecoregions (LP = Lake Plains, AP = Allegheny Plateau, NRV = Northern River Valleys, 

ADK = Adirondack Mountains, HRV = Hudson River Valley) based on a beta logistic regression of 

sound propagation models and landscape characteristics. 
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Figure 2.5.  (a) Mean probability of detecting a coyote call (with 95% confidence intervals) 

within generalized ecoregions and overall (LP = Lake Plains, AP = Allegheny Plateau, NRV = 

Northern River Valleys, ADK = Adirondack Mountains, HRV = Hudson River Valley, and All = 

Statewide average).  (b)  Estimates of coyote pair density (with 95% confidence intervals) within 

ecoregions and overall.  Shown separately for the standalone detectability model produced 

herein (gray) and the distance sampling (white) effort of Hansen (2013). 
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Conclusions 

My research demonstrated two approaches in which call-response surveys can be 

successfully used to estimate large-scale yet precise measures of true abundance that accounts 

for animals missed during a survey.  Chapter 1 investigated the efficacy of call-response surveys 

within a distance sampling framework to estimate density of vocalizing animals.  The approach 

requires careful consideration of key assumptions and identification of a precise method for 

distance estimation to be effective.  Chapter 2 explored sound propagation models as a means 

to predict a site-specific probability of call detection for vocal animals, an approach that needs 

only commonly available spatial data and a single field observer.  Both methods produced 

comparable estimates for a single population but each has unique strengths and weaknesses 

that will affect how they are best implemented in a given situation.  

Perhaps the greatest strength of this study was the opportunity to independently apply 

two unique approaches to the same problem of detection probability estimation.  The final 

abundance estimates provided by distance sampling ( ̂ = 14,310 coyote pairs, 95% CI: 8,719–

22,887) and my spatially explicit approach ( ̂ = 9,482 coyote pairs, 95% CI: 6,975–10,245) 

indicate that the later method provided a more precise estimate given the available data.  That 

the probability of detection estimated via distance sampling was significantly different from 

that of the GIS-based approach does not necessarily mean that distance sampling is not a viable 

option, it simply requires more field intensive effort and care that attendant assumptions are 

fully met.  With sufficient data to estimate a second detection function and better represent 

variation in detection across the state (as indicated by my GIS-based estimates), the differences 

in ecoregional and overall density between the two approaches would have been largely 
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accounted for.  Future monitoring of coyote populations in New York would be most efficient 

and cost effective utilizing the spatially explicit standalone approach but further refinement is 

still possible.  To apply the method to its greatest advantage I recommend that more intensive 

efforts be made to field validate the site-specific probability of detection process across a more 

diverse set of localized landscape conditions than was possible during this study.   

The above issues notwithstanding, my research is a novel addition to the body of work 

exploring new frontiers in acoustic density estimation.  Both approaches are highly adaptable to 

varying systems and can be applied to frameworks meant to provide estimates of true 

abundance or, at the very least, repeatable corrected estimates of relative abundance 

appropriate for identifying population changes over time.  These novel approaches have shown 

that aurally-based population estimation techniques can indeed be precise and scalable, 

providing efficient and cost effective means for gaining valuable population information. 
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Appendices 

Appendix I:  List of estimated ambient noise SPL values by cover type used to calculate excess 

noise levels in sound propagation models at 1 KHz, Chapter 2. 

Cover type Ambient noise (dB) 

Evergreen 19 

Grassland 20 

Deciduous 18 

Shrub 22 

Urban 19 

Open water 24 
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